Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 245, Issue 3, pp 567–570 | Cite as

Dissolution Mechanism of UO2 in Nitric Acid Solution by Photochemical Reaction

  • Eung-Ho Kim
  • Doo-Sung Hwang
  • Jae-Hyung Yoo
Article

Abstract

Photodissolution tests of UO2 sintered pellets were carried out in 3M nitric acid solution and at about 50 °C under UV irradiation. The light source was a Hg-lamp emitting a light of 254nm wavelength. In the products, chemicals such as H2O2 and NO2 ion were detected during photodissolution of the UO2 sintered pellets. Based on this result, a new dissolution mechanism of UO2 in nitric acid solution by photochemical reaction was suggested in this study.

Keywords

Physical Chemistry H2O2 Inorganic Chemistry Nitric Acid Acid Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. F. Taylor, J. Appl. Chem., 18 (1968) 129.Google Scholar
  2. 2.
    Y. Ikeda, Y. Yasuike, K. Nishimura, S. Hasegawa, Y. Takashima, J. Nucl. Mater., 224 (1995) 266.Google Scholar
  3. 3.
    Y. Asano, M. Kataoka, Y. Ikeda, S. Hasegawa, Y. Takashima, H. Tomiyasu, Prog. Nucl. Energy, 29 (1995) 243.Google Scholar
  4. 4.
    Y. Wada, K. Morimoto, H. Tomiyasu, Radiochim. Acta, 72 (1996) 83.Google Scholar
  5. 5.
    S. Sasaki, Y. Wada, H. Tomiyasu, Prog. Nucl. Energy, 32 (1998) 403.Google Scholar
  6. 6.
    E. H. Kim, D. S. Hwang, W. M. Cheong, J. H. Park, J. H. Yoo, C. S. Choi, Radiochim. Acta, 83 (1998) 147.Google Scholar
  7. 7.
    D. S. Hwang, E. H. Kim, J. H. Park, K. B. Park, J. H. Yoo, Application of Photolysis to Dissolution of Uranium Dioxide Targets for Radioisotope Production, Globall '99, Wyoming, USA, 1999.Google Scholar
  8. 8.
    E. H. Kim et al., A photoinduced dissolution of UO2 sintered pellet in the simulated solution, submitted to Korean J. Chem. Eng.Google Scholar
  9. 9.
    M. Sarakha, P. Boule, J. Photochem. Photobiol. A: Chem., 75 (1993) 61.Google Scholar
  10. 10.
    F. Machado, P. Boule, J. Photochem. Photobiol. A: Chem., 86 (1995) 73.Google Scholar
  11. 11.
    M. Daniels, R. V. Meyers, E. V. Belardo, J. Phys. Chem., 72 (1968) 389.Google Scholar
  12. 12.
    U. Shuali, M. Ottolenghi, J. Rabani, Z. Yelin, J. Phys. Chem., 73 (1969) 3445.Google Scholar
  13. 13.
    M. Stefan, A. R. Hoy, J. R. Boton, Environm. Sci. Technol., 30 (1996) 2382.Google Scholar
  14. 14.
    F. G. Einschlag, M. R. Feliz, A. L. Capparelli, J. Photochem and Photobiol. A: Chem., 110 (1997) 235.Google Scholar
  15. 15.
    F. Haber, J. Weiss, Proc. Roy. Soc. London, 147 (1934) 332.Google Scholar
  16. 16.
    D. M. Roundhill, Photochemistry and Photophysics of Metal Complexes, Plenum Press, New York, 1994.Google Scholar
  17. 17.
    L. E. Eary, L. M. Cathles, Metall. Trans., B14 (1983) 325.Google Scholar
  18. 18.
    A. Treinin, E. Hayon, J. Am. Chem. Soc., 92 (1970) 5821.Google Scholar
  19. 19.
    A. Alif, P. Boule, J. Photochem. Photobiol. A: Chem., 59 (1991) 357.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2000

Authors and Affiliations

  • Eung-Ho Kim
    • 1
  • Doo-Sung Hwang
    • 2
  • Jae-Hyung Yoo
    • 2
  1. 1.Korea Atomic Energy Research InstituteTaejonKorea
  2. 2.Korea Atomic Energy Research InstituteTaejonKorea

Personalised recommendations