New Forests

, Volume 20, Issue 1, pp 87–104 | Cite as

A model integrating seed source adaptation and seed use

  • D. Lindgren
  • C.C. Ying


A conceptual model that considers theperformance (adaptability) of a seed source (=anorigin) and the location or range of its deployment isdeveloped employing the Cauchy function. The modelassumes that there exists an optimal site type foreach provenance origin (genetic material), and thatloss in performance is a function of the “distance” (ameasure of increasing maladaptation) from the optimalsite. The model requires the estimate of threeparameters: a site requirement value that measuressite type in one dimension; a measure of optimalperformance; and a flexibility measure of the width ofseed source adaptability. The Cauchy function has aknown integral, thus the average adaptability over arange (a possible seed use zone) can be mathematicallyevaluated. The model was also extended to seed orchardcrops representing progeny of parents of variableorigins. Scots pine information in Sweden was used todemonstrate possible applications of the model.

adaptability seed zone provenance seed orchard Scots pine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, B. 1996. Sova1. Commercially available EXCEL Sheet. SkogForsk.Google Scholar
  2. Campbell, R.K. 1974. A provenance transfer model for boreal regions. Norsk Institutt for Skogsforskning. 31: 544-566.Google Scholar
  3. Campbell, R.K. 1983. Procedures for determining the biological limits of breeding zones in the Pacific Northwest, pp. 24-33. In: Proc. Servicewide Genetics Workshop, Dec. 5-9. USFA Forest Service, Charleston, South Carolina.Google Scholar
  4. Campbell, R.K. 1991. Soils, seed-zone maps, and physiography: Guidelines for seed transfer of Douglas-fir in southwestern Oregon. For. Sci. 37: 973-986.Google Scholar
  5. Gomulkiewicz, R. and Kirkpatrick, M. 1991. Quantitative genetics and the evolution of reaction norms. Evolution 36: 390-411.Google Scholar
  6. Hadders, G. and Samuelsson, K-R. 1985. Skogsfröplantager I Sverige 1985. Institutet för skogsförbättring. Årsbok 1984: 65-86.Google Scholar
  7. Lester, D.T., Ying, C.C. and Konishi, J.D. 1990. Genetic control and improvement of planting stock, pp. 180-192. In: Lavender, D.P., Parish, P., Johnson, C.M., Montgomery, G., Vyse, A., Wollis, R.A. and Winston, D. (Eds) Regenerating British Columbia's Forest. University of British Columbia Press, Vancouver.Google Scholar
  8. Lindenbaum, U., Strömberg, S. and Rosvall, O. 1986. Resultat och erfarenheter frå n plusträdsurval av tall och gran I Norrland under 1980-1984. Institutet för skogsförbättring. Årsbok 1985: 110-154.Google Scholar
  9. Lindgren, D. and Raymond C.A. 1987. Förflyttning av tallprovenienser i Sverige. Department of Forest Genetics and Plant Physiology, SLU. Arbetsrapport 18.Google Scholar
  10. Lindgren, D., Lindgren, K. and Krutzsch, P. 1993. Use of Lodgepole Pine and Its Provenances in Sweden. Swedish University of Agricultural Sciences, Department of Forest Genetics and Plant Physiology, Report 11, pp. 238-263.Google Scholar
  11. Maynard Smith, J. 1978. Optimization theory in evolution. Ann. Rev. Ecol. Syst 9: 31-56.Google Scholar
  12. Marklund, E. 1981. Äldre tallproveniensförsök ger underlag för produktionsprognser. Sveriges Skogsvå rdsförbunds tidskrift 79(5): 9-14.Google Scholar
  13. Morgenstern, E.K. and Loche, L. 1969. Using concepts of selection to delimit seed zones, pp. 205-215. In: Second FAO/IUFRO World Consult. For. Tree Breed., Washington. Doc. Vol. 1, No. FO-FTB-69-2/16.Google Scholar
  14. Prescher, F. 1986. Transfer effects on volume production of Pinus sylvestris L.: A response surface model. Scand. J For. Res. 1: 285-292.Google Scholar
  15. Raymond, C.A. and Lindgren, D. 1986. A model for genetic flexibility, pp. 159-177. In: Lindgren, D. (Ed) Provenance and Forest Tree Breeding for High Latitude. Dept. Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Report 6.Google Scholar
  16. Raymond, C.A. and Lindgren, D. 1990. Genetic flexibility-a model for determining the range of suitable environments for a seed source. Silvae Genet. 39: 112-120.Google Scholar
  17. Raymond, C.A. and Namkoong, G. 1990. Optimizing breeding zones: Genetic flexibility or maximum value. Silvae. Genet. 39: 110-112.Google Scholar
  18. Rehfeldt, G.E. 1988. Ecological genetics of Pinus contorta from the Rocky Mountains (USA): A synthesis. Silvae Genet. 37: 131-135.Google Scholar
  19. Rehfeldt, G.E. 1990. Adaptive versus zone size: Continuous zones for the Rocky Mountains (USA). In: Joint Meeting of Western Forest Genetics Association and IUFRO Working Parties S2.02-05, 06, 12 and 14, Douglas-fir, Contorta Pine, Sitka spruce and Abies Breeding and Genetic Resources. August 20-24, Olympia, Washington. 2.265 pp.Google Scholar
  20. Roberds, J.H. and Namkoong, G. 1989. Population selection to maximize value in an environmental gradient. Theor. Appl. Genet. 77: 128-134.Google Scholar
  21. Rosvall, O. Andersson, B. and Ericsson, T. 1998. Beslutsunderlag för val av skogsodlingsmaterial in norra Sverige med trädslagsvisa guider. Species-specific guidelines for choosing forest regeneration material for northern Sweden (in Swedish with summary and contents in English). SkogForsk Redogörelse 1: 1-66.Google Scholar
  22. Rosvall, O. 1999. Enhancing Gain from Long-Term Forest Tree Breeding while Conserving Genetic Diversity. Acta Universitatis Agriculturae Sueciae. Silvestria 109, 65 pp + 4 chapters.Google Scholar
  23. Samuelson, K.R. 1983. Produktionsresultat vid skogsträdsförädling. Sveriges Skogsvärdsförbunds Tidskrift 83: 9-14.Google Scholar
  24. Skogsstyrelsen. 1995. Skogsstyrelsens författningsamlingar-föreskrifter och allmänna rå d. Latest change SKSFS: 4 (in Swedish). The Swedish Forestry Act. Available on the web at Scholar
  25. Wei, R.-P. and Lindgren, D. 1995. Optimal family contribution and a linear approximation. Theoretical Population Biology 48(3): 318-332.Google Scholar
  26. Westfall, R.D. 1992. Developing seed transfer zones, pp. 313-398. In: Fins, L., Friedman, S.T. and Brotshol J.V. (Eds) Handbook of Quantitative Forest Genetics. Kluwer Academic Publishers Forestry Series 39.Google Scholar
  27. Wilhelmsson, L. and Andersson, B. 1993. Breeding of Scots pine and lodgepole pine, pp. 135-145. In: Lee, S.J. (Ed) Progeny Testing and Breeding Strategies. Proc of the Nordic Group on Tree Breeding, Forestry Commission, Edinburgh.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • D. Lindgren
    • 1
  • C.C. Ying
    • 2
  1. 1.Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUMEÅSweden
  2. 2.Research Branch, B.C. Ministry of ForestsVictoriaCanada

Personalised recommendations