The Stability of Some Selected Amino Acids Under Attempted Redox Constrained Hydrothermal Conditions

  • Eva Andersson
  • Nils G. Holm


In order to evaluate the stability of aspartic acid, serine, leucine, and alanine under redox buffered hydrothermal conditions, a series of experiments have been performed. Thepyrite-pyrrhotite-magnetite (PPM) mineral assemblage was used in the experimental systems in order to constrain the oxygen fugacity. Likewise, the K-feldspar-muscovite-quartz (KMQ) assemblage was added to control the hydrogen ion activity during the experiments. The purpose was to compare the relative stabilities in buffered and unbuffered experiments.The experiments were conducted at 200 °C and 50 bar in Teflon coated autoclaves. Glycine, which wasnot present initially, started to appear at an earlystage in the experimental systems and is believed tobe the result of decomposition of serine. Similarly,the increase in relative abundance of alanine is likely to be the result of decomposition of serine. Decomposition rates of leucine, alanine and aspartic acid were found to be lower in experiments containing the redox buffer assemblagepyrite-pyrrhotite-magnetite than in non-redox bufferedexperiments. The decomposition rate of serine washigher in buffered experiments, which indicates thata transformation pathway via dehydration of serine todehydroalanine followed by reduction to alanine ispromoted by reducing conditions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelson, P. H.: 1954, Science 119, 576.Google Scholar
  2. Andersson, E., Simoneit, B. R. T. and Holm, N. G.: 1999, Appl. Geochem. (in press).Google Scholar
  3. Bada, J. L.: 1971, Adv. in Chem. 106, 309.Google Scholar
  4. Bada, J. L. and Man, E. H.: 1980, Earth-Science Reviews 16, 21.Google Scholar
  5. Bada, J. L. and Miller, S. L.: 1970, J. Am. Chem. Soc. 92, 2774.Google Scholar
  6. Bada, J. L., Miller, S. L. and Zhao, M.: 1995, Orig. Life Evol. Biosphere 25, 111.Google Scholar
  7. Bada, J. L., Shou, M.-Y., Man, E. H. and Schroeder, R. A.: 1978, Earth Planet. Sci. Lett. 41, 67.Google Scholar
  8. Barkholt, V. and Jensen, A. L.: 1989, Analyt. Biochem. 177, 318.Google Scholar
  9. Berndt, M. E., Allen, D. E. and Seyfried Jr., W. E.: Geology 24, 351Google Scholar
  10. Bernhardt, G., Lüdemann, H.-D. and Jaenicke, R.: 1984, Naturwissenschaften 71, 583.Google Scholar
  11. Charlou, J. L., Fouquet, Y., Bougalt, H., Donval, J. P., Etoubleau, J., Jean-Baptiste, Ph., Dapoigny, A., Appriou, P. and Rona, P. A.: 1998, Geochim. Cosmochim. Acta 62, 2323.Google Scholar
  12. Conway, D. and Libby, W. F.: 1958, J. Am. Chem. Soc. 80, 1077.Google Scholar
  13. Fox, W. M.: 1995, Geochim. Cosmochim. Acta 59, 1213.Google Scholar
  14. Hayatsu, R. and Anders, E.: 1981, Topics in Current Chemistry 99, 1.Google Scholar
  15. Hennet, R. J-C., Holm, N. G. and Engel, M. H.: 1992, Naturwissenschaften 79, 361.Google Scholar
  16. Holm, N. G. and Andersson, E. M.: 1995, Planet. Space Sci. 43, 47.Google Scholar
  17. Holm, N. G. and Andersson, E. M.: 1998, The Molecular Origins of Life: Assembling Pieces of the Puzzle, in Brack A. (ed.), Cambridge University Press, pp. 86-99.Google Scholar
  18. Huber, C. and Wächtershäuser, G.: 1998, Science 281, 670.Google Scholar
  19. Kawahata, H. and Ishizuka, T.: 1989, Proc. Ocean Drill. Prog., Sci. Results 111, 215.Google Scholar
  20. Marshall, W. L.: 1994, Geochim. Cosmochim. Acta 58, 2099.Google Scholar
  21. McCollum, T. M., Ritter, G. and Simoneit, B. R. T.: 1999, Orig. Life Evol. Biosphere 29, 153.Google Scholar
  22. Metzler, D. E., Longenecker, J. B. and Snell, E. E.: 1953, J. Am. Chem. Soc. 75, 2786.Google Scholar
  23. Metzler, D. E., Longenecker, J. B. and Snell, E. E.: 1953, J. Am. Chem. Soc. 76, 639.Google Scholar
  24. Miller, S. L. and Bada, J. L.: 1988, Nature 334, 609.Google Scholar
  25. Miller, S. L. and Bada, J. L.: 1991, Nature 350, 387.Google Scholar
  26. Qian, Y., Engel, M. H., Macko, S. A., Carpenter, S. and Deming, J.W.: 1993, Geochim. Cosmochim. Acta 57, 3281.Google Scholar
  27. Schulte, M. and Shock, E.: 1995, Origins Life Evol. Biosphere 25, 161.Google Scholar
  28. Shock, E. L.: 1988, Geology 16, 886.Google Scholar
  29. Shock, E. L.: 1989, Geology 17, 572.Google Scholar
  30. Shock, E. L.: 1990a, Origins Life Evol. Biosphere 20, 331.Google Scholar
  31. Shock, E. L.: 1990b, Geochim. Cosmochim. Acta 54, 1185.Google Scholar
  32. Shock, E. L.: 1992a, Geochim. Cosmochim. Acta 56, 3481.Google Scholar
  33. Shock, E. L.: 1992b, Origins Life Evol. Biosphere 22, 135.Google Scholar
  34. Shock, E. L.: 1993, Geochim. Cosmochim. Acta 57, 3341.Google Scholar
  35. Shock, E. L.: 1994, Organic Acids in Geological Processes, in Pittman E. D. and Lewan M. D. (eds), Springer, pp. 270-318.Google Scholar
  36. Silfer, J. A., Engel, M. H. and Macko, S. A.: 1990, Appl. Geochem. 5, 159.Google Scholar
  37. Vallentyne, J. R.: 1964, Geochim. Cosmochim. Acta 28, 157.Google Scholar
  38. Vallentyne, J. R.: 1968, Geochim. Cosmochim. Acta 32, 1353.Google Scholar
  39. White, R. H.: 1984, Nature 310, 430.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Eva Andersson
    • 1
  • Nils G. Holm
    • 2
  1. 1.Department of Geology and GeochemistryStockholm UniversityStockholmSweden
  2. 2.Department of Geology and GeochemistryStockholm UniversityStockholmSweden

Personalised recommendations