International Journal of Thermophysics

, Volume 21, Issue 6, pp 1463–1471 | Cite as

Density Measurement of Molten Silicon by a Pycnometric Method

  • Y. Sato
  • T. Nishizuka
  • K. Hara
  • T. Yamamura
  • Y. Waseda
Article

Abstract

The density of molten silicon was measured using a newly developed pycnometer made of boron nitride. The present method has many advantages for measuring the density of molten silicon, which has a high temperature and can be easily oxidized. The pycnometer was precisely machined, and its volume at high temperatures was acculately determined. The procedure to overflow the excess melt was carried out in a closed apparatus under a helium atmosphere. A special procedure was introduced to avoid the error generated by the volume expansion of silicon when it solidified. The total uncertainty of the measurement was estimated to be within 0.5%. The measured density showed a linear relationship with respect to temperature and agreed well with literature values. The expansion coefficient of molten silicon was similar to those of typical molten metals in spite of the low expansion coefficient of solid silicon. This suggested that the structural change of molten silicon was similar to those of typical metals.

density molten state pycnometer semiconductor silicon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V. M. Glazov, S. N. Chizhevskaya, and N. N. Glagoleva, Liquid Semiconductors (Plenum Press, New York, 1969), pp. 55-83.Google Scholar
  2. 2.
    H. Sasaki, E. Tokizaki, K. Terashima, and S. Kimura, Jpn. J. Appl. Phys. 33:3803 (1994).Google Scholar
  3. 3.
    H. Sasaki, E. Tokizaki, K. Terashima, and S. Kimura, Jpn. J. Appl. Phys. 33:6078 (1994).Google Scholar
  4. 4.
    K. Mukai and Z. Yuan, Mat. Trans. JIM 41:323 (2000).Google Scholar
  5. 5.
    K. Mukai, Z. Yuan, and R. Shirozuka, Curr. Adv. Mat. Process. ISIJ Meet. 12:194 (1999).Google Scholar
  6. 6.
    W. K. Rhim, S. K. Chung, A. J. Rulison, and R. E. Spjut, Int. J. Thermophys. 18:459 (1997).Google Scholar
  7. 7.
    L. D. Lucas, Mem. Sci. Rev. Metal. 61:1 (1964).Google Scholar
  8. 8.
    Yu. N. Taran-Zhovnir, N. M. Kochegura, S. P. Kazachkov, V. R. Pilipchuk, E. A. Markovskii, V. Z. Kutsova, and K. V. Uzlov, Sov. Phys. Dokl. 34:282 (1989).Google Scholar
  9. 9.
    H. R. Thresh, A. F. Crawley, and D. W. G. White, Trans. Met. Soc. AIME 242:819 (1968).Google Scholar
  10. 10.
    W. H. Scott and J. H. Rendall, J. Iron Steel Inst. 175:374 (1953).Google Scholar
  11. 11.
    C. Z. Serpan, Jr. and L. J. Wittenberg, Trans. Met. Soc. AIME 221:1017 (1961).Google Scholar
  12. 12.
    W. G. Rohr, J. Less-Common Metals 10:389 (1966).Google Scholar
  13. 13.
    L. D. Lucas, Techniques of Metals Research, Vol. IV, Part 2 (John Wiley, New York, 1970), pp. 219-292.Google Scholar
  14. 14.
    R. E. Bolz and G. L. Tuve (eds.), Handbook of Tables for Applied Engineering Science (CRC Press, Cleveland, 1970), pp. 117-121.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Y. Sato
    • 1
  • T. Nishizuka
    • 2
  • K. Hara
    • 2
  • T. Yamamura
    • 2
  • Y. Waseda
    • 3
  1. 1.Department of MetallurgyTohoku UniversitySendaiJapan
  2. 2.Department of MetallurgyTohoku UniversitySendaiJapan
  3. 3.Institute for Advanced Materials ProcessingTohoku UniversitySendaiJapan

Personalised recommendations