Journal of Clinical Immunology

, Volume 20, Issue 3, pp 151–160 | Cite as

Chemokines and Dendritic Cell Traffic

  • Silvano Sozzani
  • Paola Allavena
  • Annunciata Vecchi
  • Alberto Mantovani


Localization in tissues and migration to lymphoid organs are essential steps in the immunobiology of dendritic cells (DC). Chemokines play an important role in guiding the traffic of DC. Receptor expression and responsiveness to constitutively made chemokines account for the presence of DC in normal tissues. Inflammatory chemokines and nonchemokine attractants promote recruitment and localization of DC at sites of inflammation and infection. Upon exposure to maturation signals, DC undergo a chemokine receptor switch, with down-regulation of inflammatory chemokine receptors followed by induction of CCR7. These temporally coordinated events allow DC to leave tissues and to localize in lymphoid organs by responding to CCR7 agonists. DC are also present in tumors that produce chemokines, but their significance remains to be defined. In addition to responding to chemokines, DC are a major source of certain chemokines such as macrophage-derived chemokine. The interaction of DC with chemokines is essential to the function of these cells in normal and pathological conditions and may provide tools for novel therapeutic strategies.

Chemotaxis receptors tumors leukocytes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hart DNJ: Dendritic cells: Unique leukocyte populations which control the primary immune response. Blood 90:3245-3286, 1997Google Scholar
  2. 2.
    Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 392:245-252, 1998Google Scholar
  3. 3.
    Bell D, Young JW, Banchereau J: Dendritic cells. Adv Immunol 72:255-324, 1999Google Scholar
  4. 4.
    Cella M, Sallusto F, Lanzavecchia A: Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 9:10-16, 1977Google Scholar
  5. 5.
    Sallusto F, Lanzavecchia A: Mobilizing dendritic cells for tolerance, priming, and chronic inflammation. J Exp Med 189:611-614, 1999Google Scholar
  6. 6.
    Austyn JM, Larsen CP: Migration patterns of dendritic leukocytes. Implication for transplantation. Transplantation 49:1-7, 1990Google Scholar
  7. 7.
    McWilliam AS, Nelson D, Thomas JA, Holt PG: Rapid dendritic cell recruitment is a hallmark of the acute inflammatory response at mucosal surfaces. J Exp Med 179:1331-1336, 1994Google Scholar
  8. 8.
    McWilliam AS, Napoli S, Marsh AM, Pemper FL, Nelson DJ, Pimm CL, Stumbles PA, Wells TNC, Holt PG: Dendritic cells are recruited into the airway epithelium during the inflammatory response to a broad spectrum of stimuli. J Exp Med 184:2429-2432, 1996Google Scholar
  9. 9.
    Matsuno K, Ezaki T, Kudo S, Uehara Y: A life stage of particle-laden rat dendritic cells in vivo: Their terminal division, active phagocytosis, and translocation from the liver to the draining lymph. J Exp Med 183:1865-1878, 1996Google Scholar
  10. 10.
    Macpherson GG, Jenkins CD, Stein MJ, Edwards C: Endotoxinmediated dendritic cell release from the intestine—Characterization of released dendritic cells and TNF dependence. J Immunol 154:1317-1322, 1995Google Scholar
  11. 11.
    Roake JA, Rao AS, Morris PJ, Larsen CP, Hankins DF, Austyn JM: Dendritic cell loss from nonlymphoid tissues after systemic administration of lipopolysaccharide, tumor necrosis factor, and interleukin 1. J Exp Med 181:2237-2247, 1995Google Scholar
  12. 12.
    De Smedt T, Pajak B, Muraille E, Lespagnard L, Heinen E, Debaetselier P, Urbain J, Leo O, Moser M: Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J Exp Med 184:1413-1424, 1996Google Scholar
  13. 13.
    Rollins BJ: Chemokines. Blood 90:909-928, 1997Google Scholar
  14. 14.
    Luster AD: Chemokines—Chemotactic cytokines that mediate inflammation. N Engl J Med 338:436-445, 1998Google Scholar
  15. 15.
    Mantovani A: The chemokine system: redundancy for robust outputs. Immunol Today 20:254-257, 1999Google Scholar
  16. 16.
    Mantovani A: Chemokines. Chem Immunol 72:1-6, 1999Google Scholar
  17. 17.
    D'Amico G, Bianchi G, Bernasconi S, Bersani L, Piemonti L, Sozzani S, Mantovani A, Allavena P: Adhesion, transendothelial migration, and reverse transmigration of in vitro cultured dendritic cells. Blood 92:207-214, 1998Google Scholar
  18. 18.
    Mccarthy DA, Macey MG, Bedford PA, Knight SC, Dumonde DC: Adhesion molecules are up-regulated on dendritic cells isolated from human blood. Immunology 92:244-251, 1997Google Scholar
  19. 19.
    Robert C, Fuhlbrigge RC, Kieffer JD, Ayehunie S, Hynes RO, Cheng G, Grabbe S, von Andrian UH, Kupper TS: Interaction of dendritic cells with skin endothelium: A new perspective on immunosurveillance. J Exp Med 189:627-636, 1999Google Scholar
  20. 20.
    Le Varlet B, Staquet MJ, Dezutter-Dambuyant C, Delorme PS: In vitro adhesion of human epidermal Langerhans cells to laminin and fibronectin occurs through beta 1 integrin receptors. J Leukoc Biol 51:415-420, 1992Google Scholar
  21. 21.
    Udey MC: Cadherins and Langerhans cell immunobiology. Clin Exp Immunol 107:6-8, 1997Google Scholar
  22. 22.
    Günthert U, Hofmann M, Rudy W, Reber S, Zöller M, Matzku S, Wenzel A, Ponta H, Herrlich P: A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65:13-24, 1991Google Scholar
  23. 23.
    Lin CL, Suri RM, Rahdon RA, Austyn JM, Roake JA: Dendritic cell chemotaxis and transendothelial migration are induced by distinct chemokines and are regulated on maturation. Eur J Immunol 28:4114-4122, 1998Google Scholar
  24. 24.
    Sozzani S, Sallusto F, Luini W, Zhou D, Piemonti L, Allavena P, Van Damme J, Valitutti S, Lanzavecchia A, Mantovani A: Migration of dendritic cells in response to formyl peptides, C5a and a distinct set of chemokines. J Immunol 155:3292-3295, 1995Google Scholar
  25. 25.
    Sozzani S, Luini W, Borsatti A, Polentarutti N, Zhou D, Piemonti L, D'Amico G, Power CA, Wells TN, Gobbi M, Allavena P, Mantovani A: Receptor expression and responsiveness of human dendritic cells to a defined set of CC and CXC chemokines. J Immunol 159:1993-2000, 1997Google Scholar
  26. 26.
    Vecchi A, Massimiliano L, Ramponi S, Luini W, Bernasconi S, Bonecchi R, Allavena P, Parmentier M, Mantovani A, Sozzani S: Differential responsiveness to constitutive versus inflammatory chemokines of immature and mature mouse dendritic cells. J Leukoc Biol 66:489-494, 1999Google Scholar
  27. 27.
    Randolph GJ, Beaulieu S, Lebecque S, Steinman RM, Muller WA: Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282:480-483, 1998Google Scholar
  28. 28.
    Baggiolini M, Dewald B, Moser B: Human chemokines: An update. Annu Rev Immunol 15:675-705, 1997Google Scholar
  29. 29.
    Hedrick JA, Zlotnik A: Chemokines and lymphocyte biology. Curr Opin Immunol 8:343-347, 1996Google Scholar
  30. 30.
    Mantovani A, Allavena P, Vecchi A, Sozzani S: Chemokines and chemokine receptors during activation and deactivation of monocytes and dendritic cells and in amplification of Th1 versus Th2 responses. Int J Clin Lab Res 28:77-82, 1998Google Scholar
  31. 31.
    Sozzani S, Allavena P, Vecchi A, Mantovani A: The role of chemokines in the regulation of dendritic cell trafficking. J Leukoc Biol 66:1-9, 1999Google Scholar
  32. 32.
    Sozzani S, Longoni D, Bonecchi R, Luini W, Bersani L, D'Amico G, Borsatti A, Bussolino F, Allavena P, Mantovani A: Human monocyte-derived and CD341 cell-derived dendritic cells express functional receptors for platelet activating factor. FEBS Lett 418:98-100, 1997Google Scholar
  33. 33.
    Ayehnie S, Garcia-Zepeda EA, Hoxie JA, Horuk R, Kupper TS, Luster AD, Ruprecht RM: Human immunodeficiency virus-1 entry into purified blood dendritic cells through CC and CXC chemokine coreceptors. Blood 90:1379-1386, 1997Google Scholar
  34. 34.
    Power CA, Church DJ, Meyer A, Alouani S, Proudfoot AEI, Clark-Lewis I, Sozzani S, Mantovani A, Wells TNC: Cloning and characterization of a specific receptor for the novel CC chemokine MIP-3 alpha from lung dendritic cells. J Exp Med 186:825-835, 1997Google Scholar
  35. 35.
    Greaves DR, Wang W, Dairaghi DJ, Dieu MC, de Saint-Vis B, Franz-Bacon K, Rossi D, Caux C, McClanahan T, Gordon S, Zlotnik A, Schall TJ: CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3 alpha and is highly expressed in human dendritic cells. J Exp Med 186:837-844, 1997Google Scholar
  36. 36.
    Samson M, Edinger AL, Stordeur P, Rucker J, Verhasselt V, Sharron M, Govaerts C, Mollereau C, Vassart G, Doms RW, Parmentier M: ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur J Immunol 28:1689-1700, 1998Google Scholar
  37. 37.
    Charbonnier AS, Kohrgruber N, Kriehuber E, Stingl G, Rot A, Maurer D: Macrophage inflammatory protein 3α is involved in the constitutive trafficking of epidermal langerhans cells. J Exp Med 190:1755-1767, 1999Google Scholar
  38. 38.
    Yang D, Chertov O, Bykovskala SN, Chen Q, Buffo MJ, Anderson M, Schroeder JM, Wang JM, Howard OMZ, Oppenheim JJ: beta-Defensins: Linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525-528, 1999Google Scholar
  39. 39.
    Rubbert A, Combadiere C, Ostrowski M, Arthos J, Dybul M, Machado E, Cohn MA, Hoxie J, Murphy PM, Fauci AS, Weissman D: Dendritic cells express multiple chemokine receptors used as coreceptors for HIV entry. J Immunol 160:3933-3941, 1998Google Scholar
  40. 40.
    Xu LL, Warren MK, Rose WL, Gong WH, Wang JM: Human recombinant monocyte chemotactic protein and other C-C chemokines bind and induce directional migration of dendritic cells in vitro. J Leukocyte Biol 60:365-371, 1996Google Scholar
  41. 41.
    Foti M, Granucci D, Aggujaro D, Luini W, Minardi S, Mantovani A, Sozzani S, Ricciardi-Castagnoli P: Upon dendritic cell activation chemokines and chemokine receptor expression are rapidly regulated for recruitment and maintenance of dendritic cells at the inflammatory site. Int Immunol 11:979-986, 1999Google Scholar
  42. 42.
    Nakamura K, Williams IR, Kupper TS: Keratinocyte-derived monocyte chemoattractant protein 1 (MCP-1): Analysis in a transgenic model demonstrates MCP-1 can recruit dendritic and Langerhan's cells to skin. J Invest Dermatol 105:635-643, 1995Google Scholar
  43. 43.
    Graziosi C, Pantaleo G: The multi-faceted personality of HIV. Nature Med 12:1318-1320, 1998Google Scholar
  44. 44.
    Cameron PU, Freudenthal PS, Barker JM, Gezelter S, Inaba K, Steinman RM: Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 257:383-387, 1992Google Scholar
  45. 45.
    Granelli-Piperno A, Moser B, Pope M, Chen DL, Wei Y, Isdell F, ODoherty U, Paxton W, Koup R, Mojsov S, Bhardwaj N, Clarklewis I, Baggiolini M, Steinman RM: Efficient interaction of HIV-1 with purified dendritic cells via multiple chemokine coreceptors. J Exp Med 184:2433-2438, 1996Google Scholar
  46. 46.
    Granelli-Piperno A, Delgado E, Finkel V, Paxton W, Steinman RM: Immature dendritic cells selectively replicate macrophagetropic (M-tropic) human immunodeficiency virus type 1, while mature cells efficiently transmit both M-and T-Tropic virus to T cells. J Virol 72:2733-2737, 1998Google Scholar
  47. 47.
    Reece JC, Handley AJ, Anstee EJ, Morrison WA, Crowe SM: HIV-1 selection by epidermal dendritic cells during transmission across human skin. J Exp Med 187:1623-1631, 1998Google Scholar
  48. 48.
    Zaitseva M, Blauvelt A, Lee S, Lapham CK, Klaus-Kovtun V, Motowski H, Manischewitz J, Golding H: Expression and function of CCR5 and CXCR4 on human Langerhans cells and macrophages: implication for HIV primary infection. Nature Med 3:1369-1375, 1997Google Scholar
  49. 49.
    Austyn JM: New insights into the mobilization and phagocytic activity of dendritic cells. J Exp Med 183:1287-1292, 1996Google Scholar
  50. 50.
    Sica A, Saccani A, Borsatti A, Power CA, Wells TNC, Luini W, Polentarutti N, Sozzani S, Mantovani A: Bacterial lipopolysaccharide rapidly inhibits expression of C-C chemokine receptors in human monocytes. J Exp Med 185:969-974, 1997Google Scholar
  51. 51.
    Sozzani S, Ghezzi S, Iannolo G, Luini W, Borsatti A, Polentarutti N, Sica A, Locati M, Mackay C, Wells TNC, Biswas P, Vicenzi E, Poli G, Mantovani A: Interleukin-10 increases CCR5 expression and HIV infection in human monocytes. J Exp Med 187:439-444, 1998Google Scholar
  52. 52.
    Penton-Rol G, Polentarutti N, Luini W, Borsatti A, Mancinelli R, Sica A, Sozzani S, Mantovani A: Selective inhibition of expression of the chemokine receptor CCR2 in human monocytes by IFN-γ. J Immunol 160:3869-3873, 1998Google Scholar
  53. 53.
    Xu L, Rahimpour R, Ran L, Kong C, Biragyn A, Andrews J, Devries M, Wang JM, Kelvin DJ: Regulation of CCR2 chemokine receptor mRNA stability. J Leukoc Biol 62:653-660, 1997Google Scholar
  54. 54.
    Tangirala RK, Murao K, Quehenberger O: Regulation of expression of the human monocyte chemotactic protein-1 receptor (hCCR2) by cytokines. J Biol Chem 272:8050-8056, 1997Google Scholar
  55. 55.
    Sozzani S, Allavena P, D'Amico G, Luini W, Bianchi G, Kataura M, Imai T, Yoshie O, Bonecchi R, Mantovani A: Cutting edge: Differential regulation of chemokine receptors during dendritic cell maturation: A model for their trafficking properties. J Immunol 161:1083-1086, 1998Google Scholar
  56. 56.
    Dieu MC, Vanbervliet B, Vicari A, Bridon J-M, Oldham E, Ait-Yahia S, Briere F, Zlotnik A, Lebecque S, Caux C: Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 188:373-386, 1998Google Scholar
  57. 57.
    Yanagihara S, Komura E, Nagafune J, Watarai H, Yamaguchi Y: EBI1/CCR7 is a new member of dendritic cell chemokine receptor that is up-regulated upon maturation. J Immunol 161:3096-3102, 1998Google Scholar
  58. 58.
    Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A: Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28:2760-2769, 1998Google Scholar
  59. 59.
    Lloyd AR, Biragyn A, Johnston JA, Taub DD, Xu LL, Michiel D, Sprenger H, Oppenheim JJ, Kelvin DJ: Granulocyte-colony stimulating factor and lipopolysaccharide regulate the expression of interleukin 8 receptors on polymorphonuclear leukocytes. J Biol Chem 270:28188-28192, 1995Google Scholar
  60. 60.
    Ngo VN, Tang HL, Cyster JG: Epstein–Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells. J Exp Med 188:181-191, 1998Google Scholar
  61. 61.
    Willimann K, Legler DF, Loetscher M, Stuber Roos R, Delgado MB, Clark-Lewis I, Baggiolini M, Moser B: The chemokine SLC is expressed in T cell areas of lymph nodes and mucosal lymphoid tissues and attracts activated T cells via CCR7. Eur J Immunol 28:2025-2034, 1998Google Scholar
  62. 62.
    Ngo VN, Korner H, Gunn MD, Scmidt KN, Riminton DS, Cooper MD, Browning JL, Sedgwick JD, Cyster JG: Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J Exp Med 189:403-412, 1999Google Scholar
  63. 63.
    Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD, Williams LT: A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA 95:258-263, 1998Google Scholar
  64. 64.
    Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT, Nakano H: Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 189:451-460, 1999Google Scholar
  65. 65.
    Förster R, Schubel A, Breitfeld D, Kremmer E, Renner-Müller I, Wolf E, Lipp M: CCR7 coordinates the primary immune response by establishing functional microenviroments in secondary lymphoid organs. Cell 99:23-33, 1999Google Scholar
  66. 66.
    Godiska R, Chantry D, Raport CJ, Sozzani S, Allavena P, Leviten D, Mantovani A, Gray PW: Human macrophage derived chemokine (MDC) a novel chemoattractant for monocytes, monocyte derived dendritic cells, and natural killer cells. J Exp Med 185:1595-1604, 1997Google Scholar
  67. 67.
    Mohamadzadeh M, Poltorak AN, Bergstresser PR, Beutler B, Takashima A: Dendritic cells produce macrophage inflammatory protein-1 gamma, a new member of the CC chemokine family. J Immunol 156:3102-3106, 1996Google Scholar
  68. 68.
    Adema GJ, Hartgers F, Verstraten R, deVries E, Marland G, Menon S, Foster J, Xu YM, Nooyen P, McClanahan T, Bacon KB, Figdor CG: A dendritic-cell-derived C-C chemokine that preferentially attracts naive T cells. Nature 387:713-717, 1997Google Scholar
  69. 69.
    Vicari AP, Figueroa DJ, Hedrick JA, Foster JS, Singh KP, Menon S, Copeland NG, Gilbert DJ, Jenkins NA, Bacon KB, Zlotnik A: TECK: A novel CC chemokine specifically expressed by thymic dendritic cells and potentially involved in T cell development. Immunity 7:291-301, 1997Google Scholar
  70. 70.
    Zhou LJ, Tedder TF: A distinct pattern of cytokine gene expression by human CD83(+) blood dendritic cells. Blood 86:3295-3301, 1995Google Scholar
  71. 71.
    Caux C, Massacrier C, Vanbervliet B, Dubois B, Vankooten C, Durand I, Banchereau J: Activation of human dendritic cells through CD40 cross-linking. J Exp Med 180:1263-1272, 1994Google Scholar
  72. 72.
    Tang HL, Cyster JG: Chemokine up-regulation and activated T cell attraction by maturing dendritic cells. Science 284:819-822, 1999Google Scholar
  73. 73.
    Tang HL, Cyster C: Chemokine up-regulation and activated T cell attraction by maturing dendritic cells. Science 284:819-822, 1999Google Scholar
  74. 74.
    Kanazawa N, Nakamura T, Tashiro K, Muramatsu M, Morita K, Yoneda K, Inaba K, Imamura S, Honjo T: Fractalkine and macrophage-derived chemokine: T cell-attracting chemokines expressed in T cell area dendritic cells. Eur J Immunol 29:1925-1932, 1999Google Scholar
  75. 75.
    Papadopoulos EJ, Sassetti C, Saeki H, Yamada N, Kawamura T, Fitzhugh DJ, Saraf MA, Schall T, Blauvelt A, Rosen SD, Hwang ST: Fractalkine, a CX3C chemokine, is expressed by dendritic cells and is up-regulated upon dendritic cell maturation. Eur J Immunol 29:2551-2559, 1999Google Scholar
  76. 76.
    Sato K, Kawasaki H, Nagayama H, Serizawa R, Ikeda J, Morimoto C, Yasunaga K, Yamaji N, Tadokoro K, Juji T, Takahashi TA: CC chemokine receptors, CCR-1 and CCR-3, are potentially involved in antigen-presenting cell function of human peripheral blood monocyte-derived dendritic cells. Blood 93:34-42, 1999Google Scholar
  77. 77.
    Mantovani A: Tumor-associated macrophages in neoplastic progression: A paradigm for the in vivo function of chemokines. Lab Invest 71:5-16, 1994Google Scholar
  78. 78.
    Furukawa T, Watanabe S, Kodama T, Sato Y, Shimosato Y: T-zone histiocytes in adenocarcinoma of the lung in relation to postoperative prognosis. Cancer 56:2651-2656, 1985Google Scholar
  79. 79.
    Ambe K, Mori M, Enjoji M: S-100 protein-positive dendritic cells in colorectal adenocarcinomas. Distribution and relation to the clinical prognosis. Cancer 63:496-503, 1989Google Scholar
  80. 80.
    Schroder S, Schwarz W, Rehpenning W, Loning T, Bocker W: Dendritic/Langerhans cells and prognosis in patients with papillary thyroid carcinomas. Immunocytochemical study of 106 thyroid neoplasms correlated to follow-up data. Amer J Clin Pathol 89:295-300, 1988Google Scholar
  81. 81.
    Tsujitani S, Furukawa T, Tamada R, Okamura T, Yasumoto K: Langerhans cells and prognosis in patients with gastric carcinoma. Cancer 59:501-505, 1987Google Scholar
  82. 82.
    Nomori H, Watanabe S, Nakajima T, Kameya T: Histiocytes in nasopharyngeal carcinoma in relation to prognosis. Cancer 57:100-105, 1986Google Scholar
  83. 83.
    Goldman SA, Baker E, Weyant RJ, Clarke MR, Myers JN, Lotze MT: Peritumoral CD1a-positive dendritic cells are associated with improved survival in patients with tongue carcinoma. Arch Otlar-Head Neck Surgery 124:641-646, 1998Google Scholar
  84. 84.
    Lespagnard L, Gancberg D, Rouas G, Leclercq G, deSaint-Aubain Somerhausen N, Di Leo A, Piccart M, Verhest A, Larsimont D: Tumor-infiltrating dendritic cells in adenocarcinomas of the breast: A study of 143 neoplasms with a correlation to usual prognostic factors and to clinical outcome. Int J Cancer 84:309-314, 1999Google Scholar
  85. 85.
    Kleeff J, Kusama T, Rossi DL, Ishiwata T, Maruyama H, Buchler MW, Zlotnik A, Korc M: Detection and localization of Mip-3alpha/LARC/Exodus, a macrophage proinflammatory chemokine, and its CCR6 receptor in human pancreatic cancer. Int J Cancer 81:650-657, 1999Google Scholar
  86. 86.
    Ishigami S, Aikou T, Natsugoe S, Hokita S, Iwashige H, Sonoda S: Prognostic value of HLA-DR expression and dendritic cell infiltration in gastric cancer. Oncology 55:65-69, 1998Google Scholar
  87. 87.
    Maehara Y, Tomisaki S, Oda S, Kakeji Y, Tsujitani S, Akazawa K, Sugimachi K: Lymph node metastasis and relation to tumor growth potential and local immune response in advanced gastric cancer. Int J Cancer 74:224-228, 1997Google Scholar
  88. 88.
    Nakano T, Oka K, Takahashi T, Morita S, Arai T: Roles of Langerhans' cells and T-lymphocytes infiltrating cancer tissues in patients treated by radiation therapy for cervical cancer. Cancer 70:2839-2844, 1992Google Scholar
  89. 89.
    Bethwaite PB, Holloway LJ, Thornton A, Delahunt B: Infiltration by immunocompetent cells in early stage invasive carcinoma of the uterine cervix: A prognostic study. Pathology 28:321-327, 1996Google Scholar
  90. 90.
    Coppola D, Fu L, Nicosia SV, Kounelis S, Jones M: Prognostic significance of p53, bcl-2, vimentin, and S100 protein-positive Langerhans cells in endometrial carcinoma. Hum Pathol 29:455-462, 1998Google Scholar
  91. 91.
    Giannini A, Bianchi S, Messerini L, Gallo O, Gallina E, Olmi P, Zampi G: Prognostic significance of accessory cells and lymphocytes in nasopharyngeal carcinoma. Pathol Res Pract 187:496-502, 1991Google Scholar
  92. 92.
    Inoue K, Furihata M, Ohtsuki Y, Fujita Y: Distribution of S-100 protein-positive dendritic cells and expression of HLA-DR antigen in transitional cell carcinoma of the urinary bladder in relation to tumour progression and prognosis. Virchows Arch A Pathol Anat Histopathol 422:351-355, 1993Google Scholar
  93. 93.
    Nestle FO, Burg G, Fah J, Wrone-Smith T, Nickoloff BJ: Human sunlight-induced basal-cell-carcinoma-associated dendritic cells are deficient in T cell co-stimulatory molecules and are impaired as antigen-presenting cells. Am J Pathol 150:641-651, 1997Google Scholar
  94. 94.
    Thurnher M, Radmayr C, Ramoner R, Ebner S, Bock G, Romani N, Bartsch G: Human renal-cell carcinoma tissue contains dendritic cells. Int J Cancer 68:1-7, 1996Google Scholar
  95. 95.
    Wright-Browne V, McClain KL, Talpaz M, Estrov Z: Physiology and pathophysiology of dendritic cells. Hum Pathol 28:563-579, 1997Google Scholar
  96. 96.
    Zeid NA, Muller HK: S100 positive dendritic cells in human lung tumors associated with cell differentiation and enhanced survival. Pathology 25:338-343, 1993Google Scholar
  97. 97.
    Coventry BJ, Austyn JM, Chryssidis S, Hankins D, Harris A: Identification and isolation of CD1a positive putative tumour infiltrating dendritic cells in human breast cancer. Adv Exp Med Biol 417:571-577, 1997Google Scholar
  98. 98.
    Hillenbrand EE, Neville AM, Coventry BJ: Immunohistochemical localization of CD1a-positive putative dendritic cells in human breast tumours. Br J Cancer 79:940-944, 1999Google Scholar
  99. 99.
    Scarpino S, Stoppacciaro A, Ballarini F, Marchesi M, Prat M, Stella MC, Sozzani S, Allavena P, Mantovani A, Ruco LP: Papillary carcinoma of the thyroid: Hepatocyte growth factor (HGF) stimulates tumor cell to release chemokines active in recruiting dendritic cells. Am J Pathol 156:831-837, 2000Google Scholar
  100. 100.
    Luboshits G, Shina S, Kaplan O, Engelberg S, Nass D, Chaitchik S, Keydar I, Ben-Baruch A: Elevated expression of the CC chemokine regulated on activation normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res 59:4681-4687, 1999Google Scholar
  101. 101.
    Chaux P, Moutet M, Faivre J, Martin F, Martin M: Inflammatory cells infiltrating human colorectal carcinomas express HLA class II but not B7–1 and B7–2 costimulatory molecules of the T-cell activation. Lab Invest 74:975-983, 1996Google Scholar
  102. 102.
    Viac J, Schmitt D, Claudy A: CD40 expression in epidermal tumors. Anticancer Res 17:569-572, 1997Google Scholar
  103. 103.
    Enk AH, Jonuleit H, Saloga J, Knop J: Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer 73:309-316, 1997Google Scholar
  104. 104.
    Bell D, Chomarat P, Broyles D, Netto G, Moumneh Harb G, Lebecque S, Valladeau J, Davoust J, Palucka KA, Bancherau J: In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 190:1417-1426, 1999Google Scholar
  105. 105.
    Schofield JB, Alsanjari NA, Davis J, MacLennan KA: Eosinophilic granuloma of lymph nodes associated with metastatic papillary carcinoma of the thyroid. Histopathology 20:181-183, 1992Google Scholar
  106. 106.
    Thompson LD, Wenig BM, Adair CF, Smith BC, Heffess CS: Langerhans cell histiocytosis of the thyroid: A series of seven cases and a review of the literature. Mod Pathol 9:145-149, 1996Google Scholar
  107. 107.
    Safali M, McCutcheon JM, Wright DH: Langerhans cell histiocytosis of lymph nodes: Draining a papillary carcinoma of the thyroid. Histopathology 30:599-603, 1997Google Scholar
  108. 108.
    Lindley R, Hoile R, Schofield J, Ashton-Key M: Langerhans cell histiocytosis associated with papillary carcinoma of the thyroid. Histopathology 32:180, 1998Google Scholar
  109. 109.
    Levitsky HI, Montgomery J, Ahmadzadeh M, Guarnieri F, Longo DL, Kwak LW: Immunization with granulocyte-macrophage colony-stimulating factor-transduced, but not B7–1-transduced, lymphoma cells primes idiotype-specific T cells and generates potent systemic antitumor immunity. J Immunol 156:3858-3865, 1996Google Scholar
  110. 110.
    Armstrong CA, Botella R, Galloway TH, Murray N, Kramp JM, Song IS, Ansel JC: Antitumor effects of granulocyte-macrophage colony-stimulating factor production by melanoma cells. Cancer Res 56:2191-2198, 1996Google Scholar
  111. 111.
    Stoppacciaro A, Paglia P, Lombardi L, Parmiani G, Baroni C, Colombo MP: Genetic modification of a carcinoma with the IL-4 gene increases the influx of dendritic cells relative to other cytokines. Eur J Immunol 27:2375-2382, 1997Google Scholar
  112. 112.
    Nanni P, Rossi I, De Giovanni C, Landuzzi L, Nicoletti G, Stoppacciaro A, Parenza M, Colombo MP, Lollini PL: Interleukin 12 gene therapy of MHC-negative murine melanoma metastases. Cancer Res 58:1225-1230, 1998Google Scholar
  113. 113.
    Chiodoni C, Paglia P, Stoppacciaro A, Rodolfo M, Parenza M, Colombo MP: Dendritic cells infiltrating tumors cotransduced with granulocyte/macrophage colony-stimulating factor (GMCSF) and CD40 ligand genes take up and present endogenous tumor-associated antigens, and prime naive mice for a cytotoxic T lymphocyte response. J Exp Med 190:125-133, 1999Google Scholar
  114. 114.
    Fioretti F, Fradelizi D, Stoppacciaro A, Ruco L, Minty A, Sozzani S, Vecchi A, Mantovani A: Reduced tumorigenicity and augmented leukocyte infiltration after MCP-3 gene transfer: Perivascular accumulation of dendritic cells in peritumoral tissue and neutrophil recruitment within the tumor. J Immunol 161:342-346, 1998Google Scholar
  115. 115.
    Qin Z, Noffz G, Mohaupt M, Blankenstein T: Interleukin-10 prevents dendritic cell accumulation and vaccination with granulocyte-macrophage colony-stimulating factor gene-modified tumor cells. J Immunol 159:770-776, 1997Google Scholar
  116. 116.
    De Smedt T, Van Mchelen Me, De Becker G, Urbain J, Leo O, Moser M: Effect of interleukin-10 on dendritic cell maturation and function. Eur J Immunol 27:1229-1235, 1997Google Scholar
  117. 117.
    Buelens C, Verhasselt V, De Groote D, Thielemans K, Goldman M, Willems F: Interleukin-10 prevents the generation of dendritic cells from human peripheral blood mononuclear cells cultured with Interleukin-4 and granulocyte/macrophage-colonystimulating factor. Eur J Immunol 27:756-762, 1997Google Scholar
  118. 118.
    Allavena P, Piemonti L, Longoni D, Bernasconi S, Stoppacciaro A, Ruco L, Mantovani A: Interleukin-10 prevents the differentation of monocytes to dendritic cells but promotes their maturation to macrophages. Eur J Immunol 28:359-369, 1998Google Scholar
  119. 119.
    Menetrier-Caux C, Montmain G, Dieu MC, Favrot MC, Caux C, Blay JY: Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92:4778-4791, 1998Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Silvano Sozzani
    • 1
  • Paola Allavena
    • 1
  • Annunciata Vecchi
    • 1
  • Alberto Mantovani
    • 1
    • 2
  1. 1.Istituto di Ricerche Farmacologiche Mario NegriMilanItaly
  2. 2.Department of Biotechnology, Section of General PathologyUniversity of BresciaItaly

Personalised recommendations