Advertisement

Origins of life and evolution of the biosphere

, Volume 29, Issue 6, pp 563–591 | Cite as

Clay Catalysis of Oligonucleotide Formation: Kinetics of the Reaction of the 5'-Phosphorimidazolides of Nucleotides with the Non-Basic Heterocycles Uracil and Hypoxanthine

  • Kunio Kawamura
  • James P. Ferris
Article

Abstract

The montmorillonite clay catalyzed condensation of activated monocleotides to oligomers of RNA is a possible first step in the formation of the proposed RNA world. The rate constants for the condensation of the phosphorimidazolide of adenosine were measured previously and these studies have been extended to the phosphorimidazolides of inosine and uridine in the present work to determine if substitution of neutral heterocycles for the basic adenine ring changes the reaction rate or regioselectivity. The oligomerization reactions of the 5'-phosphoromidazolides of uridine (ImpU) and inosine (ImpI) on montmorillonite yield oligo(U)s and oligo(I)s as long as heptamers. The rate constants for oligonucleotide formation were determined by measuring the rates of formation of the oligomers by HPLC. Both the apparent rate constants in the reaction mixture and the rate constants on the clay surface were calculated using the partition coefficients of the oligomers between the aqueous and clay phases. The rate constants for trimer formation are much greater than those dimer synthesis but there was little difference in the rate constants for the formation of trimers and higher oligomers. The overall rates of oligomerization of the phosphorimidazolides of purine and pyrimidine nucleosides in the presence of montmorillonite clay are the same suggesting that RNA formed on the primitive Earth could have contained a variety of heterocyclic bases. The rate constants for oligomerization of pyrimidine nucleotides on the clay surface are significantly higher than those of purine nucleotides since the pyrimidine nucleotides bind less strongly to the clay than do the purine nucleotides. The differences in the binding is probably due to Van der Waals interactions between the purine bases and the clay surface. Differences in the basicity of the heterocyclic ring in the nucleotide have little effect on the oligomerization process.

Keywords

Oligomer Montmorillonite Uridine Inosine Apparent Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banin, A., Lawless, J. G., Mazzurco, J., Church, F. M., Margulies, L. and Orenberg, J. B.: 1985, Origins Life Evol. Biosphere 15, 89–101.Google Scholar
  2. Been, M. D. and Cech, T. R.: 1988, Science 239, 1412–1416.PubMedGoogle Scholar
  3. Brindley, G. W. and Ertem, G.: 1971, Clays Clay Minerals 19, 399–404.Google Scholar
  4. Cech, T. R.: 1986, Sci. Am. 255, 64–75.PubMedGoogle Scholar
  5. Dawson, R. M. C., Elliot, D. C., Elliot, W. H. and Jones, K. M.: 1969, Data for Biochemical Research. Oxford University Press.Google Scholar
  6. Ding, P. Z., Kawamura, K. and Ferris, J. P.: 1996, Origins Life Evol. Biosphere 26, 151–171.Google Scholar
  7. Ertem, G. and Ferris, J. P.: 1996, Nature 379, 238–240.CrossRefPubMedGoogle Scholar
  8. Ertem, G. and Ferris, J. P.: 1997, J. Am. Chem. Soc. 119, 7197–7201.Google Scholar
  9. Ertem, G. and Ferris, J. P.: 1998, Origins Life Evol. Biosphere 28, 485–499.CrossRefGoogle Scholar
  10. Ferris, J. P. and Ertem, G.: 1992a, Science 257, 1387–1389.PubMedGoogle Scholar
  11. Ferris, J. P. and Ertem, G.: 1992b, Origins Life Evol. Biosphere 22, 369–381.Google Scholar
  12. Ferris, J. P. and Ertem, G.: 1993a, J. Am. Chem. Soc. 115, 12270–12275.Google Scholar
  13. Ferris, J. P. and Ertem, G.: 1993b, Origins Life Evol. Biosphere 23, 229–241.Google Scholar
  14. Ferris, J. P., Ertem, G. and Agarwal, V. K.: 1989a, Origins Life Evol. Biosphere 19, 151–164.Google Scholar
  15. Ferris, J. P., Ertem, G. and Agarwal, V. K.: 1989b, Origins Life Evol. Biosphere 19, 165–178.Google Scholar
  16. Ferris, J. P., Hill, A. R., Jr., Liu, R. and Orgel, L. E.: 1996, Nature 381, 59–61.CrossRefPubMedGoogle Scholar
  17. Ferris, J. P. and Kamaluddin: 1989, Origins Life Evol. Biosphere 19, 606–619.Google Scholar
  18. Ferris, J. P., Kamaluddin and Ertem, G.: 1990, Origins Life Evol. Biosphere 20, 279–297.Google Scholar
  19. Greaves, M. P. and Wilson, W. J.: 1969, Soil Biol. Biochem. 1, 317–323.Google Scholar
  20. Guerrier-Takada, C., Gardiner, K., March, T., Pace, N. and Altman, S.: 1983, Cell 35, 849–857.CrossRefPubMedGoogle Scholar
  21. Hill Jr, A. R., Dee Nord, L., Orgel, L. E. and Robins, R. K.: 1988, J. Mol. Evol. 28, 170–171.PubMedGoogle Scholar
  22. Inoue, T. and Orgel, L. E.: 1982, J. Mol. Biol. 162, 201–217.PubMedGoogle Scholar
  23. Inoue, T. and Orgel, L. E.: 1983, Science 219, 859–862.PubMedGoogle Scholar
  24. Joyce, G. F., Inoue, T. and Orgel, L. E.: 1984, J. Mol. Biol. 176, 279–306.PubMedGoogle Scholar
  25. Joyce, G. F., Schwartz, A. W. Miller, S. L. and Orgel, L. E.: 1987, Proc. Natl. Acad. Sci. U.S.A. 84, 4398–4402.PubMedGoogle Scholar
  26. Kanavarioti, A.: 1994, Origins Life Evol. Biosphere 24, 479–494.Google Scholar
  27. Kawamura, K. and Ferris, J. P.: 1994, J. Am. Chem. Soc. 116, 7564–7572.Google Scholar
  28. Li, T. and Nicolaou, K. C.: 1994, Nature 369, 218–221.PubMedGoogle Scholar
  29. Lohrmann, R., Bridson, P.K. and Orgel, L. E.: 1980, Science 208, 1464–1465.PubMedGoogle Scholar
  30. Orgel, L. E.: 1986, J. theor. Biol. 123, 127–149.PubMedGoogle Scholar
  31. Prabahar, K. J., Cole, T. D. and Ferris, J. P.: 1994, J. Am. Chem. Soc. 116, 10914–10920.PubMedGoogle Scholar
  32. Prabahar, K. J. and Ferris, J. P.: 1997, J. Am. Chem. Soc. 119, 4330–4337.PubMedGoogle Scholar
  33. Ruzicka, F. L. and Frey, P. A.: 1993, Bioorganic Chem. 21, 238–248.Google Scholar
  34. Saenger, W.: 1984, Principles of Nucleic Acid Structure. Springer-Verlag, New York.Google Scholar
  35. Sawai, H., Higa, K. and Kuroda, K.: 1992, J. Chem. Soc. Perkin I, 505–508.Google Scholar
  36. Sawai, H., Kuroda, K. and Hojo, H.: 1989, Bull. Chem. Soc. Jpn. 62.Google Scholar
  37. Sawai, H. and Ohno, M.: 1981, Bull. Chem. Soc. Jpn. 54, 2759–2762.Google Scholar
  38. Sawhney, B. L. and Singh, S. S.: 1997, Clays Clay Minerals 45, 333–338.Google Scholar
  39. Schwartz, A. W. and Orgel, L. E.: 1985, Science 228, 585–587.Google Scholar
  40. Sievers, D. and von Kiedrowski, G,: 1994, Nature 369, 221–224.PubMedGoogle Scholar
  41. Terfort, A. and Kiedrowski, G.: 1992, Angew. Chem. Int. Ed. Engl. 31, 654–656.Google Scholar
  42. Van Vliet, M. J., Visscher, J. and Schwartz, A. W.: 1995, J. Mol. Evol. 41, 257–261.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Kunio Kawamura
    • 1
  • James P. Ferris
    • 2
  1. 1.Department of Applied ChemistryOsaka Prefecture UniversitySakai, OsakaJapan
  2. 2.Department of ChemistryRensselaer Polytechnic InstituteTroy

Personalised recommendations