International Journal of Thermophysics

, Volume 21, Issue 1, pp 71–84 | Cite as

Simultaneous Measurements of the Thermal Conductivity and Thermal Diffusivity of Molten Salts with a Transient Short-Hot-Wire Method

  • X. Zhang
  • M. Fujii
Article

Abstract

A transient short-hot-wire technique has been successfully used to measure the thermal conductivity and thermal diffusivity of molten salts (NaNO3, Li2CO3/K2CO3, and Li2CO3/Na2CO3) which are highly corrosive. This method was developed from the hot-wire technique and is based on two-dimensional numerical solutions of unsteady heat conduction from a short wire with the same length-to-diameter ratio and boundary conditions as those used in the actual experiments. In the present study, the wires are coated with a pure Al2O3 thin film by using a sputtering apparatus. The length and radius of the hot wire and the resistance ratio of the lead terminals and the entire probe are calibrated using water and toluene with known thermophysical properties. Using such a calibrated probe, the thermal conductivity and thermal diffusivity of molten nitrate are measured within errors of 3 and 20%, respectively. Also, the thermal conductivity of the molten carbonates can be measured within an error of 5%, although the thermal diffusivity can be measured within an error of 50%.

molten carbonates molten nitrate thermal conductivity thermal diffusivity transient short-hot-wire technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. Shibata, H. Ohta, and Y. Waseda, Mater. Trans. JIM 32:837 (1991).Google Scholar
  2. 2.
    M. J. Assael, C. A. Nieto de Castro, H. M. Roder, and W. A. Wakeham, in Experimental Thermodynamics, Vol. III. Measurement of the Transport Properties of Fluid, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (Blackwell Scientific, Oxford, 1991), Chap. 7.Google Scholar
  3. 3.
    Y. Nagasaka and A. Nagashima, Trans. JSME 47:1323 (1981).Google Scholar
  4. 4.
    X. Zhang, T. Tomimura, and M. Fujii, in Proc. 14th Japan Symp. Thermophys. Prop. (Jpn. Soc. Thermophys. Prop., 1993), pp. 23-26.Google Scholar
  5. 5.
    M. Fujii, X. Zhang, N. Imaishi, S. Fujiwara, and T. Sakamoto, Int. J. Thermophys. 18:327 (1997).Google Scholar
  6. 6.
    C. A. Nieto de Castro, S. F. Y. Li, A. Nagashima, R. D. Trengove, and W. A. Wakeham, J. Phys. Chem. Ref. Data 15:1073 (1986).Google Scholar
  7. 7.
    N. Nagasaka and A. Nagashima, Rev. Sci. Instrum. 52:229 (1981).Google Scholar
  8. 8.
    S. T. Ro, J. H. Lee, and J. Y. Yoo, in Thermal Conductivity 21 (Plenum Press, New York, 1990), pp. 151-164.Google Scholar
  9. 9.
    X. Zhang, S. Fujiwara, Z. Qi, and M. Fujii, J. Jpn. Soc. Micrograv. Appl. 16(2):129 (1999).Google Scholar
  10. 10.
    K. Kobayashi, N. Araki, and Y. Iida, in Proc. 7th Int. Heat Transfer Conf., Vol. 6 (1982), pp. 467-472.Google Scholar
  11. 11.
    S. Kitade, Y. Kobayashi, Y. Nagasaka, and A. Nagashima, High Temp.-High Press. 21:219 (1989).Google Scholar
  12. 12.
    JSME Data Book: Heat Transfer, 4th ed. (1986).Google Scholar
  13. 13.
    N. Araki, M. Matsuura, and T. Hirata, in Proc. 8th Japan Symp. Thermophys. Prop. (Jpn. Soc. Thermophys. Prop., 1987), pp. 1-4.Google Scholar
  14. 14.
    S. Otsubo, Y. Nagasaka, and A. Nagashima, Trans. JSME 61:806 (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • X. Zhang
    • 1
  • M. Fujii
    • 1
  1. 1.Institute of Advanced Material StudyKyushu UniversityKasugaJapan

Personalised recommendations