Origins of life and evolution of the biosphere

, Volume 30, Issue 5, pp 439–457 | Cite as

Self-Organization and Evolutionin a Simulated Cross Catalyzed Network

  • A. Hunding
  • Robin Engelhardt


Motivated by an alternative to the concept of a prebiotic soup inthe form of interacting crystal growth close to hot vents, we investigatea model system in which the growth rate of a particular entity is modified (enhanced or reduced) by other entities present, thus forming aweb of cross catalysis. Initially random interactions are imposed, butthe entities compete for a common source, and some entities may thusvanish in the competition. New entities, or mutations (error copies),with randomly selected interactions to the web are then introduced,and the concentrations of the entities are followed as solutions to stiffordinary differential equations. Entities with positive growth maycreate new related entities with slightly randomly modified interactions to the web. Extinctions, wild-type survival and replacement,and self-organization to sustain periodic external variations, are studied. It is shown that even systems with mostly cross-inhibition and noinitial autocatalysis may eventually create highly stable self-organizedsystems. We find that an already established cross catalyzed systemoften wins over a selfreplicating invader (or mutant).

genetic takeover hydrothermal mineral origin of life quasispecies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bastolla, U. and Parisi, G.: 1998, Physica D 115, 219.Google Scholar
  2. Cains-Smith, A. G.: 1982, Genetic Takeover and the Mineral Origins of Life, Cambridge University Press, Cambridge.Google Scholar
  3. Engelhardt, R.: 1998, Emergent Percolating Nets in Evolution, HCØ Tryk, Copenhagen.Google Scholar
  4. Grüner, W., Giegerich, R., Strothmann, D., Reidys, C., Weber, J., Hofacker, I. L. and Schuster, P.: 1996, Monatshefte Chemie 127, 355 and 375.Google Scholar
  5. Happel, R. and Stadler, P. F.: 1998, J. Theoret. Biol. 195, 329.Google Scholar
  6. Hofbauer, J. and Sigmund, K.: 1998, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge.Google Scholar
  7. Kauffman, S. A. and Johnsen, S.: 1991, J. Theor. Biol. 149, 467.Google Scholar
  8. Muller, A. W. J.: 1995, Prog. Biophys. Molec. Biol. 63, 193.Google Scholar
  9. Newman, M. E. J.: 1997, J. Theor. Biol. 189, 235.Google Scholar
  10. Newman, M. E. J. and Engelhardt, R.: 1998, Proc. R. Soc. Lond. B 265, 1333.Google Scholar
  11. Nowak, M. A.: 1992, Trends Ecol. Evol. 7, 118.Google Scholar
  12. Phillipson, P. E. and Schuster, P.: 1994, J. Math. Biol. 32, 545.Google Scholar
  13. Schuster, P.: 1993, Origins of Life 23, 373.Google Scholar
  14. Smith, D. J., Forrest, S., Hightower, R. R. and Perelson, A.: 1997, J. Theoret. Biol. 189, 141.Google Scholar
  15. Stadler, P. F., Fontana, W. and Miller, J. H.: 1993, Physica D 63, 378.Google Scholar
  16. Stadler, P. F., Schnabl, W., Forst, C. and Schuster, P.: 1995, Bull. Math. Biol. 57, 21.Google Scholar
  17. Sultan, R., Ortoleva, P., Depasquale, F. and Tartaglia, P.: 1990, Earth-Sci. Rev. 29, 163.Google Scholar
  18. Walter, M. R.: 1996, Evolution of Hydrothermal Ecosystems on Earth (and Mars?), Ciba Foundation Symposium 202, Wiley, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • A. Hunding
    • 1
  • Robin Engelhardt
    • 1
  1. 1.Department of Chemistry, H. C. Ørsted Institute C116University of CopenhagenCopenhagen ØDenmark

Personalised recommendations