Biology and Philosophy

, Volume 14, Issue 3, pp 395–430 | Cite as

Fixing Content and Function in Neurobiological Systems: The Neuroethology of Electroreception

  • Brian L. Keeley


Are attributions of content and function determinate, or is there no fact of the matter to be fixed? Daniel Dennett has argued in favor of indeterminacy and concludes that, in practice, content and function cannot be fixed. The discovery of an electrical modality in vertebrates offers one concrete instance where attributions of function and content are supported by a strong scientific consensus. A century ago, electroreception was unimagined, whereas today it is widely believed that many species of bony fish, amphibians, sharks, skates, and rays possess this non-human sensory modality. A look at the history of science related to this discovery reveals a highly interdisciplinary endeavor, encompassing ethology, behavioral analysis, neuroscience, and evolutionary biology. While each area provides important evidence, none is sufficient on its own to fix content and function. Instead, I argue that an interdisciplinary, neuroethological approach is required to carry out such determinations. Further, a detailed consideration of biological research suggests that while content and function claims are empirically underdetermined and uncertain, there is insufficient reason to believe in an additional problem of indeterminism. In particular, Dennett's indeterminism arises from a research methodology -- logical adaptationism -- that generates evidence from only one of the areas of neuroethology. However, logical adaptationism does not reflect adaptationism as it is practiced in contemporary biology. I conclude that Dennett is faced with a dilemma: On the one hand, he can hold to logical adaptationism and the indeterminism that results from it, while giving up the relevance of his arguments to biological practice. On the other, he can embrace a more accurate version of adaptationism -- one which plays a role in a larger neuroethological framework -- but from which no strong indeterminacy claims follow.

adaptationism Daniel C. Dennett electric fish electroreception evolution evolutionary function indeterminism mental content neuroethology sensory modality underdetermination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akins, K.: 1993, ‘What Is It Like to be Boring and Myopic?’ in B. Dahlbom (ed.), Dennett and His Critics: Demystifying Mind, Blackwell, Oxford, pp. 124-160.Google Scholar
  2. Amundson, R.: 1988, ‘Logical Adaptationism’, Behavioral and Brain Sciences 11, 505-506.Google Scholar
  3. Bullock, T.H.: 1974, ‘An Essay on the Discovery of Sensory Receptors and the Assignment of Their Functions Together with an Introduction to Electroreceptors’, in A. Fessard (ed.), Handbook of Sensory Physiology, (Vol. 3), Springer-Verlag, Berlin, 1-12. Reprinted as Bullock (1993: pp. 171–182).Google Scholar
  4. Bullock, T.H.: 1993, How Do Brains Work? Papers of a Comparative Neurophysiologist, Birkaäuser, Boston.Google Scholar
  5. Bullock, T.H., Hagiwara, S., Kusano, K. and Negishi, K.: 1961, ‘Evidence for a Category of Electroreceptors in the Lateral Line of Gymnotid Fishes’, Science 134, 1426-1427. Reprinted as Bullock (1993: p. 140).Google Scholar
  6. Bullock, T.H. and Heiligenberg, W. (eds.): 1986, Electroreception, John Wiley & Sons, New York.Google Scholar
  7. Bullock, T.H. and Szabo, T.: 1986, ‘Introduction’, in Heiligenberg, W. (eds.): 1986, Electroreception, John Wiley & Sons, New York Bullock and Heiligenberg (1986: pp. 1-12).Google Scholar
  8. Catania, K.C.: 1994, The Sensory Biology of the Star-nosed Mole. Unpublished Ph.D. thesis, University of California, San Diego.Google Scholar
  9. Coates, C.W.: 1947, ‘The Kick of an Electric Eel’, The Atlantic 180, 75-79.Google Scholar
  10. Dalhgren, U.: 1910, ‘The Origin of the Electric Tissues in Fishes’, The American Naturalist 44, 193-202.Google Scholar
  11. Darwin, C.: 1897, On the Origin of Species, M.I.T. Press (A Bradford Book), Cambridge, Mass.Google Scholar
  12. Dennett, D.C.: 1988a, ‘Précis of The Intentional Stance’, Behavioral and Brain Sciences 11, 495-505.Google Scholar
  13. Dennett, D.C.: ‘Author's Response: Science, Philosophy, and interpretation’, Behavioral and Brain Sciences 11, 535-546.Google Scholar
  14. Dretske, F.: 1981, Knowledge and the Flow of Information, M.I.T. Press (A Bradford Book), Cambridge, Mass.Google Scholar
  15. Dretske, F.: 1988, Explaining Behavior: Reasons in a World of Causes, M.I.T. Press (A Bradford Book), Cambridge, Mass.Google Scholar
  16. Dretske, F.: 1995, Naturalizing the Mind (The 1994 Jean Nicod Lectures), M.I.T. Press (A Bradford Book), Cambridge, Mass.Google Scholar
  17. Du Bois-Reymond, E.: 1884, Untersuchungen über thierische Elektricatät, (Vol. 3), Berlin, Reimer.Google Scholar
  18. Fields, R.D. and Ellisman, M.H.: 1988, ‘Functionally Significant Plasticity of Synaptic Morphology: Studies on the Ribbon Synapse of the Ampullae of Lorenzini’, Neuroscience 25, 705-720.Google Scholar
  19. Gould, E., McShea, W. and Grand, T.: 1993, ‘Function of the Star in the Star-nosed Mole’, Condylura cristat. Journal of Mammalogy 74, 108-116.Google Scholar
  20. Gould, S.J. and Lewontin, R.C.: 1979, ‘The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme’, Proceedings of the Royal Society of London 8, 205-258.Google Scholar
  21. Hagedorn, M. and Heiligenberg, W.: 1985, ‘Court and Spark: Electrical Signals in the Courtship and Mating of Gymnotid Fish’, Animal Behaviour 33, 254-265.Google Scholar
  22. Heiligenberg, W.: 1991, Neural Nets in Electric Fish, M.I.T. Press (A Bradford Book), Cambridge, Mass.Google Scholar
  23. Hempel, C.G.: 1966, The Philosophy of Natural Science, Prentice-Hall, Inc., Englewood Cliffs, N. J.Google Scholar
  24. Hensel, H.: 1955, ‘Quantitative Beziehungen zwischen Temperaturreiz und Aktionspotentialen der Lorenzinischen Ampullen’, Z. vergl. Physiol. 37, 509-526.Google Scholar
  25. Hopkins, C.D.: 1977, ‘Electric Communication’, in T.A. Sebeok (ed.), How Animals Communicate, Bloomington, Indiana University Press, pp. 263-289.Google Scholar
  26. Kalmijn, A.J.: 1982, ‘Electric and Magnetic Field Detection in Elasmobranch Fishes’, Science 218, 916-918.Google Scholar
  27. Kalmijn, A.J.: 1987, ‘Detection of Weak Electric Fields’, in J. Atema, R. R. Fay, A.N. Popper and W.N. Tavolga (eds.), Sensory Biology of Aquatic Animals, Springer-Verlag, 151-186.Google Scholar
  28. Keeley, B.: 1997, Cognitive Science as the Computational Neuroethology of Intelligent Behavior: Why Biological Facts are Important for Explaining Intelligent Behavior. Unpublished Ph.D. thesis, University of California, San Diego.Google Scholar
  29. Kitcher P. and Kitcher, P.: 1988, ‘The Devil, the Details, and Dr. Dennett’, Behavioral and Brain Sciences 11, 517-518.Google Scholar
  30. Lissmann, H.W.: 1951, ‘Continuous Electrical Signals for the Tail of a Fish, gymnarchus niloticus Cuv.’ Nature 167, 201-202.Google Scholar
  31. Lissmann, H.W.: 1958, ‘On the Function and Evolution of Electric Organs in Fish’, Journal of Experimental Biology 35, 156-191.Google Scholar
  32. Lissmann, H.W.: 1961, ‘Ecological Studies on Gymnotids’, in C. Chagas and A. Paes de Carvalho (eds.), Bioelectrogenesis: A Comparative Survey of its Mechanisms with Particular Emphasis on Electric Fishes, Elsevier Publishing Company, Amsterdam, pp. 215-226.Google Scholar
  33. Lissmann, H.W. and Machin, K.E.: 1958, ‘The Mechanism of Object Location in Gymnarchus niloticus and Similar Fish’, Jourhal of Experimental Biology 35, 451-486.Google Scholar
  34. Loewenstein, W.R.: 1960, ‘Mechanisms of Nerve Impulse Initiation in a Pressure Receptor (Lorenzinian Ampulla)’, Nature 188, 1034-1035.Google Scholar
  35. Loewenstein, W.R. and Ishiko, N.: 1962, ‘Sodium Chloride Sensitivity and Electro-chemical Effects in a Lorenzinian Ampulla’, Nature 194, 292-294.Google Scholar
  36. Millikan, R.G.: 1984, Language, Thought, and Other Biological Categories: New Foundations for Realism, M.I.T. Press (A Bradford Book), Cambridge, Mass.Google Scholar
  37. Millikan, R.G.: 1993, White Queen Psychology and Other Essays for Alice, M.I.T. Press (A Bradford Book), Cambridge, Mass.Google Scholar
  38. Moller, P.: 1995, Electric Fishes: History and Behavior, Chapman & Hall, New York.Google Scholar
  39. Moller, P. and Fritzsch, B.: 1993, ‘From Electrodetection to Electroreception: The Problem of Understanding a Non-human Sense’, Journal of Comparative Physiology A 173, 734-737.Google Scholar
  40. Murray, R.W.: 1960, ‘The Response of the Ampullae of Lorenzini to Mechanical Stimulation’, Journal of Experimental Biology 37, 417-424.Google Scholar
  41. Murray, R.W.: 1962, ‘The Response of the Ampullae of Lorenzini to Electrical Stimulation’, Journal of Experimental Biology 39, 119-128.Google Scholar
  42. Parker, G.W. and van Heusen, A.P.: 1917, ‘The Responses of the Catfish, Amiurus nebulosus, to Metallic and Non-metallic Rods’, American Journal of Physiology 44, 405-420.Google Scholar
  43. Rosenberg, H.: 1928, ‘Die elektrischen Organe’, in A. Bethe, G. von Bergmann, G. Einbaum and A. Ellinger (eds.), Handbook der Normalen und Pathologischen Physiologie, Springer, Berlin, pp. 876-925.Google Scholar
  44. Sand, A.: 1938, ‘The Function of the Ampullae of Lorenzini with Some Observations on the Effect of Temperature on Sensory Rhythms’, Proceedings of the Royal Society of London B 125, 524-553.Google Scholar
  45. Scheich, H.G., Langmer, C., Tidemann, C., Coles, R.B. and Guppy, A.: 1986, ‘Electroreception and Electrolocation in the Platypus’, Nature 319, 401-402.Google Scholar
  46. Schlegel, P.A. and Richard, P.B.: 1992, ‘Behavioral Evidence Against Possible Subaquatic Electrosensitivity in the Pyrenean Desman Galemys pyrenaicus (Talpidae, mammalia)’, Mammalia 56, 527-532.Google Scholar
  47. Snow, C.P.: 1959, The Two Cultures: And a Second Look, Cambridge University press, Cambridge.Google Scholar
  48. Wu, C.H.: 1984, ‘Electric Fish and the Discovery of Animal Electricity’, American Scientist 72, 598-607.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Brian L. Keeley
    • 1
  1. 1.Philosophy/Neuroscience/Psychology Program, Department of PhilosophyWashington UniversitySt. LouisU.S.A

Personalised recommendations