Lipid Synthesis Under Hydrothermal Conditions by Fischer- Tropsch-Type Reactions

  • Thomas M. McCollom
  • Gilles Ritter
  • Bernd R. T. Simoneit


Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated on Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 °C for 2–3 days and produces lipid compounds ranging from C2 to >C35 which consist of n-alkanols, n- alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.


Carbon Source Formic Acid Oxalic Acid Lipid Class Hydrothermal System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrajano, T. A., Sturchio, N. C., Bohlke, J. K., Lyon, G. L., Poreda, R. J. and Stevens, C. M.: 1988, Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: Deep or shallow origin? Chem. Geol. 71, 211–222.Google Scholar
  2. Anders, E., Hayatsu, R. and Studier, M. H.: 1974, Interstellar molecules: Origin of catalytic reactions on grain surfaces? Astrophys. J. 192, 401–405.Google Scholar
  3. Anderson, R. B.: 1984, The Fischer-Tropsch Reaction (Academic Press, London).Google Scholar
  4. Asinger, F.: 1968, Paraffins. Chemistry and Technology (translated by B. J. Hazzard), Pergamon Press, Oxford.Google Scholar
  5. Bardy, R. C. III and Pettit, R.: 1981, On the mechanism of the Fischer-Tropsch reaction. The chain propagation step. J. Amer. Chem. Soc. 103, 1287–1289.Google Scholar
  6. Barmann, H.: 1980, ‘Koch Reactions’, in J. Falbe (ed.), New Syntheses with Carbon Monoxide, (Springer-Verlag, Berlin), pp. 372–413.Google Scholar
  7. Berndt, M. E. and Seyfried, W. E., Jr.: 1997, Effect of olivine alteration and dissolution kinetics on the redox state of carbon and sulfur in the oceanic crust. AGU 1997 Fall Meeting, EOS 78(46), F773.Google Scholar
  8. Berndt, M. E., Allen, D.W. and Seyfried, W. E., Jr.: 1996, Reduction of CO2 during serpentinization of olivine at 300 ∘C and 500 bar. Geology 24, 351–354.Google Scholar
  9. Bray, E. E. and Evans, E. D.: 1961, Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta 22, 2–15.Google Scholar
  10. Charlou, J. and Donval, J.: 1993, Hydrothermal methane venting between 12∘N and 6∘N along the Mid-Atlantic Ridge. J. Geophys. Res. 98, 9625–9642.Google Scholar
  11. Corliss, J. B., Baross, J. A. and Hoffman, S. E.: 1981, An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanol. Acta, No. SP, 59–69.Google Scholar
  12. Crossey, L. J.: 1991, Thermal degradation of aqueous oxalate species. Geochim. Cosmochim. Acta 55, 1515–1527.Google Scholar
  13. Elliot, R. C., Hallen, R. T. and Sealock, L. J., Jr.: 1983, Aqueous catalyst systems for the water-gas shift reaction. 2. Mechanism of basic catalysis. Ind. Eng. Chem. Prod. Res. Dev. 22, 431–435.Google Scholar
  14. Ferris, J. P.: 1992, ‘Chemical Markers of Prebiotic Chemistry in Hydrothermal Systems’, in Holm, N. G. (ed.), Marine Hydrothermal Systems and the Origin of Life, Origins Life and Evol. Biosphere 22, 109–134.Google Scholar
  15. Fischer, F.: 1935, Die Synthese der Treibstoffe (Kogasin) und Schmieröle aus Kohlenoxyd und Wasserstoff bei gewöhnlichem Druck. Brennstoff-Chemie 16, 1–11.Google Scholar
  16. Gelpi, E., Han, L., Nooner, D. W. and Oró, J.: 1970, Closed system Fischer-Tropsch synthesis over meteoritic iron, iron ore and nickel-iron alloy. Geochim. Cosmochim. Acta 34, 965–979.Google Scholar
  17. Giggenbach, W. F.: 1997, Relative importance of thermodynamic and kinetic processes in governing the chemical and isotopic composition of carbon gases in high-heatflow sedimentary basins. Geochim. Cosmochim. Acta 61, 3763–3785.Google Scholar
  18. Gold, T. and Soter, S.: 1982, Abiogenic methane and the origin of petroleum. Energy Exploration and Exploitation 1, 89–104.Google Scholar
  19. Holm, N. G. (ed.): 1992, Marine Hydrothermal Systems and the Origin of Life (Kluwer Academic Publishers, Dordrecht, The Netherlands).Google Scholar
  20. Horvath, I. T. and Siskin, M.: 1991, Direct evidence for formate ion formation during the reaction of coals with carbon monoxide and water. Energy and Fuels 5, 932–933.Google Scholar
  21. Hunt, J. M.: 1996, Petroleum Geochemistry and Geology, 2nd ed., W. H. Freeman and Co., New York, 743 pp.Google Scholar
  22. Koch, H. and Gilfert, W.: 1955, Part of the work of H. Koch in: Carbonsäure Synthese aus Olefinen, Kohlenoxyd und Wasser, Brennstoff-Chemie 36, 321–352.Google Scholar
  23. Kugler, E. L. and Steffgen, F. W. (eds.): 1979, Hydrocarbon Synthesis from Carbon Monoxide and Hydrogen, American Chemical Society, Advances in Chemistry Series 178, Washington, D.C.Google Scholar
  24. Leif, R. N. and Simoneit, B. R. T.: 1998, The role of alkenes produced during the hydrous pyrolysis of a shale. Geochim. Cosmochim. Acta, submitted.Google Scholar
  25. Leif, R. N. and Simoneit, B. R. T.: 1995a, Confined-pyrolysis as an experimental method for hydrothermal organic synthesis. Origins Life and Evol. Biosphere 25, 417–429.Google Scholar
  26. Leif, R. N. and Simoneit, B. R. T.: 1995b, Ketones in hydrothermal petroleums and sediment extracts from Guaymas Basin, Gulf of California. Org. Geochem. 23, 889–904.Google Scholar
  27. Maitlis, P.M., Long, H. C., Quyoum, R., Turner, M. L. and Wang, Z.: 1996, Heterogeneous catalysis of C-C bond formation: black art of organometallic science? Chem. Comm., 1–8.Google Scholar
  28. Martens, C. S.: 1990, Generation of short chain organic acid anions in hydrothermally altered sediments of the Guaymas Basin, Gulf of California. Appl. Geochem. 5, 71–76.Google Scholar
  29. Mathez, E. A.: 1987, Carbonaceous matter in mantle xenoliths: Composition and relevance to the isotopes. Geochim. Cosmochim. Acta 51, 2339–2347.Google Scholar
  30. Miller, S. L. and Bada, J. L.: 1988, Submarine hotsprings and the origin of life. Nature 334, 609–611.Google Scholar
  31. Morgan, G. B. IV, Chou, I.-Ming and Pasteris, J. D.: 1992, Speciation in experimental C-O-H fluids produced by the thermal dissociation of oxalic acid dihydrate. Geochim. Cosmochim Acta 56, 281–294.Google Scholar
  32. Nooner, D. W. and Oró, J.: 1979, ‘Synthesis of Fatty Acids by a Closed System Fischer-Tropsch Process’, in E. L. Kugler and F. W. Steffgen (eds.), Hydrocarbon Synthesis from Carbon Monoxide and Hydrogen, Amer. Chem. Soc., Adv. Chem Ser. 178, pp. 159–171.Google Scholar
  33. Palmer, D. A., Weselowski, D. J. and Bell, J. L. S.: 1993, EMF measurements of oxalic and formic acid decomposition kinetics and interaction of acetate with aluminum (III) to high temperatures. EOS 74(16), 327–328.Google Scholar
  34. Salvi, S. and Williams-Jones, A. E.: 1997, Fischer-Tropsch synthesis of hydrocarbons during subsolidus alteration of the Strange Lake peralkaline granite, Quebec/Labrador, Canada. Geochim. Cosmochim. Acta 61, 83–99.Google Scholar
  35. Satterfield, C. N. and Huff, G. A., Jr.: 1982, Carbon number distribution of Fischer-Tropsch products formed on an iron catalyst in a slurry reactor. J. of Catalysis 73, 187–197.Google Scholar
  36. Satterfield, C. N., Hanlon, R. T., Tung, S. E., Zou, Z.-M. and Papaefthymiou, G. C.: 1986a, Initial behavior of a reduced fused-magnetite catalyst in the Fischer-Tropsch Synthesis. Ind. Eng. Chem. Prod. Res. Dev. 25, 401–407.Google Scholar
  37. Satterfield, C. N., Hanlon, R. T., Tung, S. E., Zou, Z.-M. and Papaefthymiou, G. C.: 1986b, Effect of water on the iron-catalyzed Fischer-Tropsch synthesis. Ind. Eng. Chem. Prod. Res. Dev. 25, 407–414.Google Scholar
  38. Sherwood Lollar, B., Frape, S. K., Weise, S. M., Fritz, P., Macko, S. A. and Welhan, J. A.: 1993, Abiogenic methanogenesis in crystalline rocks. Geochim. Cosmochim. Acta 57, 5087–5097.Google Scholar
  39. Shock, E.: 1990, Geochemical constraints on the origin of organic compounds in hydrothermal systems. Orig. Life and Evol. Biosphere 20, 331–367.Google Scholar
  40. Simoneit, B. R. T.: 1995, Evidence for organic synthesis in high temperature aqueous media-facts and prognosis. Orig. Life and Evol. Biosphere 25, 119–140.Google Scholar
  41. Simoneit, B. R. T. (ed).: 1990, Organic matter in hydrothermal systems – maturation, migration and biogeochemistry. Appl. Geochem. 5, 1–248.Google Scholar
  42. Simoneit, B. R. T., Kawka, O. E. and Brault, M.: 1988, Origin of gases and condensates in the Guaymas Basin hydrothermal system (Gulf of California). Chem. Geol. 71, 169–182.Google Scholar
  43. Stepanov, A. G., Luzgin, M. V., Romannikov, V. N. and Zamaraev, K. I.: 1995, NMR observation of Koch reaction in zeolite H-ZSM-5 under mild conditions. J. Amer. Chem. Soc. 117, 3615–3616.Google Scholar
  44. Studier, M. H., Hayatsu, R. and Anders, E.: 1968, Origin of organic matter in the early solar system-I. Hydrocarbons. Geochim. Cosmochim. Acta 32, 151–173.Google Scholar
  45. Sugisaki, R. and Mimura, K.: 1994, Mantle hydrocarbons: Abiotic or biotic? Geochim. Cosmochim. Acta 58, 2527–2542.Google Scholar
  46. Szatmari, P.: 1989, Petroleum formation by Fischer-Tropsch synthesis in plate tectonics. Amer. Assoc. Petrol. Geol. Bull. 73, 989–998.Google Scholar
  47. Tingle, T. N. and Hochella, M. F., Jr.: 1993, Formation of reduced carbonaceous matter in basalts and xenoliths: Reaction of C-O-H gases on olivine crack surfaces. Geochim. Cosmochim. Acta 57, 3245–3249.Google Scholar
  48. Tissot, B. P. and Welte, D. H.: 1984, Petroleum Formation and Occurrence, Springer-Verlag, Berlin, 699 pp.Google Scholar
  49. Welhan, J. A.: 1988, Origins of methane in hydrothermal systems. Chem. Geol. 71, 183–198.Google Scholar
  50. Welhan, J. A. and Lupton, J. E.: 1987, Light hydrocarbon gases in Guaymas Basin hydrothermal fluids: thermogenic versus abiogenic origin. Bull. Amer. Assoc. Petrol. Geol. 71, 215–223.Google Scholar
  51. Weres, O., Newton, A. S. and Tsao, L.: 1988, Hydrous pyrolysis of alkanes, alkenes, alcohols and ethers. Org. Geochem. 12, 433–444.Google Scholar
  52. Yoshino, D., Hayatsu, R. and Anders, E.: 1971, Origin of organic matter in early solar system-III. Amino acids: catalytic synthesis. Geochim. Cosmochim. Acta 35, 927–938.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Thomas M. McCollom
    • 1
  • Gilles Ritter
    • 1
  • Bernd R. T. Simoneit
    • 1
  1. 1.Petroleum and Environmental Geochemistry Group, College of Oceanic and Atmospheric SciencesOregon State UniversityCorvallisU.S.A.

Personalised recommendations