Advertisement

Origins of life and evolution of the biosphere

, Volume 29, Issue 5, pp 521–545 | Cite as

Survival of Life on Asteroids, Comets and Other Small Bodies

  • B. C. Clark
  • A. L. Baker
  • A. F. Cheng
  • S. J. Clemett
  • D. McKay
  • H. Y. McSween
  • C. M. Pieters
  • P. Thomas
  • M. Zolensky
Article

Abstract

The ability of living organisms to survive on the smaller bodies in our solar system is examined. The three most significant sterilizing effects include ionizing radiation, prolonged extreme vacuum, and relentless thermal inactivation. Each could be effectively lethal, and even more so in combination, if organisms at some time resided in the surfaces of airless small bodies located near or in the inner solar system. Deep within volatile-rich bodies, certain environments theoretically might provide protection of dormant organisms against these sterilizing factors. Sterility of surface materials to tens or hundreds of centimeters of depth appears inevitable, and to greater depths for bodies which have resided for long periods sunward of about 2 A.U.

Keywords

Radiation Organic Chemistry Geochemistry Solar System Living Organism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders E., DuFresne, E., Hayatsu, R., Dufresne, A., Cavaille, A. and Fitch, F.: 1964, Science 146, 1157.Google Scholar
  2. Auda, H. and Emborg, C.: 1973, Radiation Research 53, 273.PubMedGoogle Scholar
  3. Austin, J., Ross, A., Smith, A., Fortey, R. and Thomas, R.: 1997, Proceedings. Royal. Society of London B 264, 467.Google Scholar
  4. Beckenbach, A.: 1995, Science 270, 2015.Google Scholar
  5. Binzel, R. P., Farinella, P., Zapalla, V. and Cellino, A.: 1989, ‘Asteroid Rotation Rates: Distributions and Statistics’, in R. P. Binzel, T. Gehrels and M. S. Matthews (eds), Asteroids II, Univ. AZ Press, pp. 416–441.Google Scholar
  6. Brownlee, D.: 1985, Cosmic Dust – Collection and Research, Annual Review Earth Planetary Science 13, 147.Google Scholar
  7. Cano, R. and Borucki, M.: 1995, Science 268, 1060.PubMedGoogle Scholar
  8. Chang, S.: 1993, ‘Prebiotic Synthesis in Planetary Environments’, in J. M. Greenberg (ed.), The Chemistry of Life's Origins, pp. 259–299.Google Scholar
  9. Chapman, C. R., Veverka, J., Belton, J. S., Neukum, G. and Morrison, D.: 1996a, Icarus 120, 231.Google Scholar
  10. Chapman, C. R., Ryan, E., Merline, W. J., Neukum, G., Wagner, R., Thomas, P. C., Veverka, J. and Sullivan, R.: 1996b, Icarus 120, 77.Google Scholar
  11. Cheng, A. F., Haff, P. K., Johnson, R. E. and Lanzerottti, L. J.: 1986, ‘Interactions of Planetary Magnetospheres with Icy Satellite Surfaces’, in J. A. Burns and M. Matthews (eds)., Satellites, Univ. of Ariz. Press-Tucson, pp. 403–436.Google Scholar
  12. Chyba, C. and McDonald, G.: 1995, Annual Review Earth Planetary Science 23, 215.Google Scholar
  13. Clark, B.: 1985, Orig. Life 16, 410.Google Scholar
  14. Clayton R.N. and Mayeda, T. K.: 1984, Earth Planet. Sci. Lettt. 67, 151.Google Scholar
  15. Clayton R. N. and Mayeda, T. K.: 1996, Meteoritics and Planet. Sci. 31, A31.Google Scholar
  16. Combes, M. and 18 others: 1986, Nature 321, 266.Google Scholar
  17. Cronin, J. R. and Chang, S.: 1993, ‘Organic Matter inMeteorites: Molecular and Isotopic Analysis of the Murchison Meteorite,’ in The Chemistry of Life's Origins, Vol. 416, Series C: Mathematical and Physical Sciences, J. M. Greenberg, C. X. Mendoza, V. Pirronelle (eds), Kluwer Acedemic Publ., Dordrecht, pp. 209–258.Google Scholar
  18. Cronin J.R., Pizzarello, S. and Cruikshank, D. P.: 1988, ‘Organic Matter in Carbonaceous Chondrites, Planetary Satellites, Asteroids and Comets’, in J. Kerridge and M. Matthews (eds), Meteorites and the Early Solar System, University of Arizona Press, pp. 819–857.Google Scholar
  19. Dose, K. and Gill, M.: 1993, Origins of Life and Evolution of the Biosphere 25, 277.Google Scholar
  20. Dose, K., Bieger-Dose, A., Kerz, O. and Gill, M.: 1991, Orig. Life Evol. Biosph. 21, 177.PubMedGoogle Scholar
  21. Dose, K., Bieger-Dose, A., Dillmann, R., Gill, M., Kerz, O., Klein, A. and Stridde, C.: 1996, Advanced. Space Research 18 (12), 51.Google Scholar
  22. Fanale, F. and Salvail, J.: 1990, Icarus 88, 38.Google Scholar
  23. Fraundorf, P.: 1980, Geophys. Res. Lett. 10, 765.Google Scholar
  24. Friedmann, I.: 1994, Viable Microorganisms in Permafrost, D. Gilighinsky, Pushchino (ed.).Google Scholar
  25. Gilichinsky, D., Vorobyova, E., Erokhina, L., Fyordorov-Dayvdovand, D. and Chaikovskaya, N. R.: 1992, Advanced Space Research 12, 255.Google Scholar
  26. Gladman, B., Burns, J., Duncan, M., Lee, P. and Levison, H.: 1996, Science 271, 1387.Google Scholar
  27. Grimm, R. E. and McSwen, H. Y.: 1989, Icarus 82, 244.Google Scholar
  28. Hanner, M. S. and Campins, H.: 1986, Icarus 67, 51.Google Scholar
  29. Hartmann, W.: 1989, Lunar and Planetary Science Conference 20, 377.Google Scholar
  30. Hayatsu R. and Anders, E.: 1981, Topics in Current Chemistry 99, 1.Google Scholar
  31. Horneck, G.: 1995, Planetary Space Science 43, 189.Google Scholar
  32. Horneck, G. and Bücker, H.: 1985, Origins of Life 16, 414.Google Scholar
  33. Horneck, G., Bücker, H. and Reitz, G.: 1994, Advanced Space Research 14 (10), 41.Google Scholar
  34. Hörz, F. and Cintala, M.: 1997, Meteorites and Planetary Science 32, 179.Google Scholar
  35. Housen, K., Wilkening, L. L., Chapman, C. and Greenberg, R.: 1979, Icarus 39, 317.Google Scholar
  36. Kaplan, H. S. and Moses, L. E.: 1964, Science 145, 21.PubMedGoogle Scholar
  37. Kennedy, M., Reader, S. and Swierczynski, L.: 1994, Microbiology 140, 2513.PubMedGoogle Scholar
  38. Kiefer, Jürgen: 1990, Biological Radiation Effects, Springer-Verlag, Heidelberg.Google Scholar
  39. Lee, P.: 1997, ‘Physical Properties and Processing of Asterioid Regoliths and Interiors’, PhD Thesis, Cornell University.Google Scholar
  40. Lindahl, T.: 1993, Nature 362, 709.PubMedGoogle Scholar
  41. Lindahl, T.: 1997, Cell 90, 1.PubMedGoogle Scholar
  42. Lunine, J., Neugebauer, G. and Jakosky, B.: 1982, J. Geophys. Res. 87, 10297.Google Scholar
  43. Maher, K. and Stevenson, D.: 1988, Nature 331, 612.PubMedGoogle Scholar
  44. Mattimore, V. and Battista, J.: 1996, Journal Bacteriology 178, 633.Google Scholar
  45. McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., Vali, H., Romanek, C. S., Clemett, S. J., Chillier, X. D., Maechling, C. R. and Zare, R. N.: 1996, Science 273, 924.PubMedGoogle Scholar
  46. McKay, D. S., Swindle, T. D. and Greenberg, R.: 1989, ‘Asteroidal Regoliths: What We Do Not Know’ in R. P. Binzel, T. Gehrels and M. S. Matthews (eds.), Asteroids II, Univ. AZ Press, pp. 617–642.Google Scholar
  47. McKee, S. and Gould, G. W.: 1988, Bull. Math. Biol. 50, 493.PubMedGoogle Scholar
  48. Melosh, H.: 1988, Nature 332, 687.PubMedGoogle Scholar
  49. Mitchell, F. and Ellis, W.: 1971, Proceedings 2nd Lunar Science Conference 3, 2721.Google Scholar
  50. Mullie F. and Reisse, J.: 1987, Topics in Current Chemistry 139, 85.Google Scholar
  51. NAS: 1997, Mars Sample Return: Issues and Recommendations, Nat'l Acad. Sciences, Nat'l. Res. Council, Space Studies Board Task Group on Issues in Sample Return, Nat'l Academy Press.Google Scholar
  52. Nash, R.: 1985, Ref. Journal of Parenternal Science and Technology 39 (6), 251.Google Scholar
  53. Nishiizumi, K., Klein, J., Middleton, R. and Arnold, J. R.: 1984, Earth Planet. Sci. Lett. 70, 164.Google Scholar
  54. Normile, D.: 1997, Science 276, 1187.Google Scholar
  55. Poinar, H., Höss, M., Bada, J. and Pääbo, S.: 1996, Science 272, 864.PubMedGoogle Scholar
  56. Priest, F.: 1995, in Science 270, 2015.Google Scholar
  57. Reames, D. L.: 1998, Private communication.Google Scholar
  58. Reedy, R. C., Arnold, R. J. and Lal, D.: 1983, Science 219, 127.Google Scholar
  59. Reid, G. C., Holzer, T. E., Crutzen P. J. and Isaksen, I.: 1976, Nature 259, 177.Google Scholar
  60. Sandford, S. A. and Bradley, J. P.: 1989, Icarus 82, 146.PubMedGoogle Scholar
  61. Scott E. R. D., Keil, K. and Stoffler, D.: 1992, Geochim. Cosmochim. Acta 56, 4281.Google Scholar
  62. Setlow, P.: 1992, Journal of Bacteriology 174 (9), 2737.PubMedGoogle Scholar
  63. Simonsen, L. and Wilson, J.: 1997, Personal communication to update GCR annual dose rates, using improved modes of the fluxes and energetic particle interactions, and for material closely approximating silicate regolith compositions.Google Scholar
  64. Simonsen, L., Nealy, J., Townsend, L. and Wilson, J.: 1990, ‘Radiation Exposure for Manned Mars Surface Missions’, NASA Technical Paper 2979.Google Scholar
  65. Sleep, N., Zahnle, K., Kasting, J. and Morowitz, H.: 1989, Nature 342, 139–142.CrossRefPubMedGoogle Scholar
  66. Sneath, P.: 1962, Nature 195, 643–646.PubMedGoogle Scholar
  67. Stetter, K.: 1996, Personal communication.Google Scholar
  68. Tanaka, K., Scott, D. and Greeley, R.: 1992, ‘Global Stratigraphy’, in H. H. Kieffer, B. M. Jakosky, C. W. Snyder and M. Mathews (eds.), Mars, Univ. of Arizona Press, Tucson, pp. 345–382.Google Scholar
  69. Thomas, P.: 1997, ‘Ejecta Emplacement on the Martian Satellites’, Icarus, (submitted).Google Scholar
  70. Thomas, P. and Veverka, J.: 1980, Icarus 41, 365.Google Scholar
  71. Veverka, J. and 16 others: 1997, Science 278, 2109.PubMedGoogle Scholar
  72. Vickery, A. and Melosh, H.: 1987, Science 237, 738.Google Scholar
  73. Wdowczyk, J. and Wolfendale, A.: 1977, Nature 268, 510.Google Scholar
  74. Zolensky, M. E., Barrett R. A. and Browning, L.: 1993, Geochim. Cosmochim. Acta 57, 3123.Google Scholar
  75. Zolensky, M. E., Ivanov A. V., Yang, V. and Ohsumi, K.: 1996, Meteoritics and Planet. Sci. 31, 484.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • B. C. Clark
    • 1
  • A. L. Baker
    • 2
  • A. F. Cheng
    • 3
  • S. J. Clemett
    • 4
  • D. McKay
    • 5
  • H. Y. McSween
    • 6
  • C. M. Pieters
    • 7
  • P. Thomas
    • 8
  • M. Zolensky
    • 5
  1. 1.Advanced Planetary Studies GroupLockheed Martin AstronauticsDenver
  2. 2.Planetary Protection LaboratoryLockheed Martin AstronauticsDenver
  3. 3.Johns Hopkins Applied Physics LaboratoryLaurel
  4. 4.Dept. of ChemistryStanford UniversityStanford
  5. 5.NASA Johnson Space CenterHouston
  6. 6.Department of Geological SciencesUniversity of TennesseeKnoxville
  7. 7.Department of Geological SciencesBrown UniversityProvidence
  8. 8.Cornell UniversityIthaca

Personalised recommendations