Advertisement

Surveys in Geophysics

, Volume 19, Issue 4, pp 289–338 | Cite as

Long Nonlinear Surface and Internal Gravity Waves in a Rotating Ocean

  • R.H.J. Grimshaw
  • L.A. Ostrovsky
  • V.I. Shrira
  • Yu. A. Stepanyants
Article

Abstract

Nonlinear dynamics of surface and internal waves in a stratified ocean under the influence of the Earth's rotation is discussed. Attention is focussed upon guided waves long compared to the ocean depth. The effect of rotation on linear processes is reviewed in detail as well as the existing nonlinear models describing weakly and strongly nonlinear dynamics of long waves. The influence of rotation on small-scale waves and two-dimensional effects are also briefly considered. Some estimates of the influence of the Earth's rotation on the parameters of real oceanic waves are presented and related to observational and numerical data.

Keywords

Nonlinear Dynamic Numerical Data Nonlinear Model Internal Wave Oceanic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ablowitz, M.J. and Segur, H.: 1977, ‘Asymptotic solutions of the Korteweg – de Vries equation’, Stud. Appl. Math. 57, 13–44.Google Scholar
  2. 2.
    Ablowitz, M.J. and Segur, H.: 1981, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia.Google Scholar
  3. 3.
    Apel, J.R., Holbrook, J. R., Tsai, J., and Liu, A.K.: 1985, ‘The Sulu Sea internal soliton experiment’, J. Phys. Ocean. 15, 1625–1651.Google Scholar
  4. 4.
    Apel, J., Ostrovsky, L.A., and Stepanyants, Yu. A.: 1996, ‘Internal solitons in the ocean’, Progr. in Geophys. (submitted).Google Scholar
  5. 5.
    Benilov, E.S.: 1992, ‘On surface waves in a shallow channel with an uneven bottom’, Stud. Appl. Math. 87, 1–14.Google Scholar
  6. 6.
    Benilov, E.S. and Pelinovsky, E.N.: 1988, ‘On the theory of wave propagation in nonlinear fluctuating media without dispersion’, ZhETF, 94(1), 175–185 (in Russian). (Engl. transl.: 1988, Sov. Phys. JETP, 67(1), 98–103.)Google Scholar
  7. 7.
    Calogero, F. and Degasperis, A.: 1978, ‘Solution by the spectral-transform method of a nonlinear evolution equation including as a special case the cylindrical KdV equation’, Lett. Nuovo Cim. 23(4), 150–154.Google Scholar
  8. 8.
    Chereskin, T.K.: 1983, Generation of internal waves in Massachusetts Bay, J. Geophys. Res. 88(C4), 2649–2661.Google Scholar
  9. 9.
    Christie, D.R., Muirhead, K.J., and Hales, A.L.: 1978, ‘On solitary waves in the atmosphere’, J. Atmos. Sci. 35(5), 805–825.Google Scholar
  10. 10.
    Davey, A. and Stewartson, K.: 1974, ‘On three-dimensional packets of surface waves’, Proc. Roy. Soc. London, A338, 101–110.Google Scholar
  11. 11.
    Davis, R.E. and Acrivos, A.: 1967, ‘Solitary internal waves in deep water’, J. Fluid Mech., 29, 593–607.Google Scholar
  12. 12.
    Dryuma, V.S.: 1976, ‘Analytical solution of an axially symmetric Korteweg – de Vries equation’, Izv. Mold. Akad. Nauk, ser. Fiz. Tekhn. i Mat. Nauk 3, 87 (in Russian).Google Scholar
  13. 13.
    Galkin, V.M. and Stepanyants, Yu.A.: 1991, ‘On the existence of stationary solitary waves in a rotating fluid’, Prikl. Matamat. i Mekhanika 55(6), 1051–1055 (in Russian). (Engl. transl.: J. Appl. Maths. Mechs., 55(6), 939–943.)Google Scholar
  14. 14.
    Garrett, C.J.R. and Munk, W.H.: 1975, ‘Space-time scales of internal waves: A progress report’, J. Geophys. Res. 80, 291–298.Google Scholar
  15. 15.
    Gerkema, T.: 1994, ‘Nonlinear dispersive internal tides: Generation models for a rotating ocean’, PhD Thesises, Utrecht University, Netherland.Google Scholar
  16. 16.
    Gerkema, T., and Zimmerman, J.T.F.: 1995, ‘Generation of nonlinear internal tides and solitary waves’, J. Phys. Ocean. 25, 1081–1094.Google Scholar
  17. 17.
    Gerkema, T.: 1996, ‘A unified model for the generation and fission of internal tides in a rotating ocean’, J. Marine Res. 54 421–450.Google Scholar
  18. 18.
    Germain, J.-P. and Renouard, D.P.: 1991, ‘On permanent nonlinear waves in a rotating fluid’, Fluid Dyn. Res., 7, 263–278.Google Scholar
  19. 19.
    Gill, A.E.: 1982, Atmosphere–Ocean Dynamics, Academic, San Diego, California.Google Scholar
  20. 20.
    Gilman, O.A., Grimshaw, R. and Stepanyants, Yu.A.: 1995, ‘Approximate analytical and numerical solutions of the stationary Ostrovsky equation’, Stud. Appl. Math. 95(1), 115–126.Google Scholar
  21. 21.
    Gilman, O.A., Grimshaw, R. and Stepanyants, Yu.A.: 1995, ‘Dynamics of internal solitary waves in a rotating fluid’, Dyn. Atm. Ocean, 23(1), 403–411.Google Scholar
  22. 22.
    Glazman, R.E., Fabrikant, A.L. and Greysukh, A.: 1996, ‘Statistics of spatio-temporal variations of sea surface height based on Topex altimeter measurements’, Int. J. Rem. Sensing, 17(13), 2647–2666.Google Scholar
  23. 23.
    Glazman, R.E. and Cheng, B.: 1997, Altimeter observations of baroclinic oceanic inertiagravity wave turbulence. Proc. Roy. Soc. London, Ser. A., (to appear)Google Scholar
  24. 24.
    Gorshkov, K.A., Ostrovsky, L.A. and Papko, V.V.: 1976, ‘Interactions and bound states of solitons as classical particles’, ZhETF, 71(2), 585–593 (in Russian). (Engl. transl.: 1976, Sov. Phys. JETP, 44(2), 306–311.)Google Scholar
  25. 25.
    Grimshaw, R.: 1975, ‘A note on the β-plane approximation’, Tellus, 27(4), 351–357.Google Scholar
  26. 26.
    Grimshaw, R.: 1985, ‘Evolution equations for long nonlinear internal waves in stratified flows’, Stud. Appl. Math., 65, 159–188.Google Scholar
  27. 27.
    Grimshaw, R.: 1985, ‘Evolution equations for weakly nonlinear long internal waves in a rotating fluid’, Stud. Appl. Math. 73, 1–33.Google Scholar
  28. 28.
    Grimshaw, R.: 1997, ‘Internal solitary waves’, in P.L.F. Liu (ed.), Advances in Coastal and Ocean Engineering, World Scientific Publishing Company, Singapore, 3, 1–30.Google Scholar
  29. 29.
    Grimshaw, R., He, J-M. and Ostrovsky, L.A.: 1997, ‘Terminal damping of a solitary wave due to radiation in rotational systems’, Stud. Appl. Math. (accepted).Google Scholar
  30. 30.
    Grimshaw, R., Ostrovsky, L.A. and Stepanyants, Yu.A.: 1997, ‘Wave breaking in rotating fluids’, (in preparation).Google Scholar
  31. 31.
    Grimshaw, R. and Tang, S.: 1990, ‘The rotation-modified Kadomtsev – Petviashvili equation. An analytical and numerical study’, Stud. Appl. Math. 83, 223–248.Google Scholar
  32. 32.
    Halpern, D.: 1971, ‘Semidiurnal tides in Massachusetts Bay’, J. Geophys. Res. 76, 6573–6584.Google Scholar
  33. 33.
    Haury, L.R., Briscoe, M.G. and Orr, M.H.: 1979, ‘Tidally generated internal wave packets in Massachusetts Bay’, Nature 278, 312–317.Google Scholar
  34. 34.
    Joseph, R.J.: 1977, ‘Solitary waves in a finite depth fluid’, J. Phys. A: Math. and Gen. 10(12), L225–L227.Google Scholar
  35. 35.
    Kamenkovich, V.M., Koshlyakov, M.N. and Monin, A.S.: 1988, Synoptic Vortices in the Ocean, Gidrometeoizdat, Leningrad (in Russian).Google Scholar
  36. 36.
    Kamenkovich V.M. and Kulakov, A.V.: 1977, ‘Influence of rotation on waves in a stratified ocean’, Okeanologiya, 17(3), (in Russian). (Engl. transl.: 1977 Oceanology, 17(3), 260–266.)Google Scholar
  37. 37.
    Karpman, V.I.: 1973, Nonlinear Waves in Dispersive Media, Nauka, Moscow (in Russian). (Engl. transl.: 1975, Pergamon Press, Oxford.)Google Scholar
  38. 38.
    Katsis, C., and Akylas, T.R.: 1987, Solitary internal waves in a rotating channel: A numerical study, Phys. Fluids, 30(2), 297–301.Google Scholar
  39. 39.
    Kravtsov, Yu.A., Ostrovsky, L.A. and Stepanov, N.S.: 1974, ‘Geometrical optics of inhomogeneous and nonstationary media’, Proc. IEEE, 62(11), 91–112.Google Scholar
  40. 40.
    Kubota, T., Ko, D.R.S. and Dobbs, L.D.: 1978, ‘Propagation of weakly nonlinear internal waves in a stratified fluid of finite depth’, A. I. A. A. J. Hydronautics 12, 157–165.Google Scholar
  41. 41.
    Landau, L.D., and Lifshitz, E.M.: 1988, Hydrodynamics, Nauka, Moscow (in Russian). (Engl. transl.: 1959, Fluid Mechanics, Pergamon Press, London.)Google Scholar
  42. 42.
    Le Blond, P.H. and Mysak, L.A. 1978, Waves in the Ocean, Elsevier, Amsterdam – Oxford – New York.Google Scholar
  43. 43.
    Leonov, A.I.: 1981, ‘The effect of the Earth's rotation on the propagation of weak nonlinear surface and internal long oceanic waves’, Ann. New York Acad. Sci. 373 150–159.Google Scholar
  44. 44.
    Melville, W.K., Tomasson, G.G. and Renouard, D.P.: 1989, ‘On the stability of Kelvin waves’, J. Fluid. Mech. 206, 1–23.Google Scholar
  45. 45.
    Miles, J.W.: 1979, ‘The asymptotic solution of the Korteweg – de Vries equation in the absence of solitons’, Stud. Appl. Math. 60, 59–72.Google Scholar
  46. 46.
    Miropolsky, Yu.Z.: 1981, Dynamics of Internal Gravity Waves in the Ocean, Gidrometeoizdat, Leningrad (in Russian).Google Scholar
  47. 47.
    Muzylev, S.V.: 1982, ‘Nonlinear equatorial waves in the ocean’, Digest of Reports, 2nd All-Union Congress of Oceanographers, Sebastopol, USSR, 2, 26–27 (in Russian).Google Scholar
  48. 48.
    Nakamura, A. and Chen, H.H.: 1981, ‘Soliton solutions of the cylindrical KdV equation’, J. Phys. Soc. Japan 50(2), 711–718.Google Scholar
  49. 49.
    Nezlin, M.V. and Snezhkin, E.N.: 1993, Rossby Vortices, Spiral Structures, Solitons, Springer-Verlag, Heidelberg.Google Scholar
  50. 50.
    Odulo, A.B.: 1979, ‘On long nonlinear waves in a rotating ocean of variable depth’, DAN SSSR, 248(6), 1439–1442 (in Russian).Google Scholar
  51. 51.
    Ostrovsky, L.A.: 1965, ‘Propagation of modulated waves in dispersive media’, Radiotekhnika i Elektronika, 10(7), 1176–1180 (in Russian). (Engl. transl.: 1965, Radio Engng. Electron.(USA), 7, 1009–1013.)Google Scholar
  52. 52.
    Ostrovsky, L.A.: 1974, ‘Approximate methods in the theory of nonlinear waves’, Izv. VUZov, Radiofizika, 17(4), 454–476 (in Russian). (Engl. transl.: 1974, Radiophysics and Quantum Electronics, 17(4), 344–360.)Google Scholar
  53. 53.
    Ostrovsky, L.A.: 1978, ‘Nonlinear internal waves a in rotating ocean’, Okeanologiya, 18(2), 181–191 (in Russian). (Engl. transl.: Oceanology, 18(2), 119–125).Google Scholar
  54. 54.
    Ostrovsky, L.A. and Stepanyants, Yu.A.: 1989, ‘Do internal solitons exist in the ocean?’, Rev. Geophys. 27(3), 293–310. (In Russian: 1987, Solitary internal waves in the ocean: The theory and field observations, Methods of Hydrophysical Research; Waves and Eddies. Gorky, Institute of Applied Physics, 18–47.)Google Scholar
  55. 55.
    Ostrovsky, L.A. and Stepanyants, Yu.A.: 1990, ‘Nonlinear surface and internal waves in rotating fluids’, in A.V. Gaponov–Grekhov, M.I. Rabinovich, and J. Engelbrecht (eds.), Nonlinear Waves 3, Proc. 1989 Gorky School on Nonlinear Waves, Springer–Verlag, Berlin, Heidelberg, pp. 106–128. (In Russian: 1993, Nonlinear Waves. Physics and Astrophysics. Nauka, Moscow, 132–153.)Google Scholar
  56. 56.
    Pedlosky, J.: 1987, Geophysical Fluid Dynamics, 2nd edn., Springer-Verlag, New-York.Google Scholar
  57. 57.
    Petviashvili, V. and Pokhotelov, O.: 1992, Solitary Waves in Plasmas and in the Atmosphere, Gordon and Breach, Philadelphia.Google Scholar
  58. 58.
    Pelinovsky, E.N.: 1996, Hydrodynamics of Tsunami Waves, Inst. Appl. Phys., RAS, N.Novgorod, 275 pp. (in Russian).Google Scholar
  59. 59.
    Pelinovsky, E.N. and Stepanyants, Yu.A.: 1978, ‘Linear approximation in pulse propagation problems in nonlinear media’, Izv. VUZov, Radiofizika, 21(11), 1706–1708. (Engl. transl.: 1978, Radiophysics and Quantum Electronics, 21(11), 1186–1188.)Google Scholar
  60. 60.
    Phillips, O.M.: 1977, The Dynamics of the Upper Ocean, 2nd edn., Cambridge Univ. Press, Cambridge.Google Scholar
  61. 61.
    Pingree, R.D. and Mardel, G.T.: ‘Solitary internal waves in the Celtic Sea, 1985’, Prog. Oceanog. 14, 431–441.Google Scholar
  62. 62.
    Pinkel. R.: 1979, ‘Observations of strongly nonlinear internal motions in the open sea using a range-gated Doppler sonar’, J. Phys. Ocean. 9(4), 675–686.Google Scholar
  63. 63.
    Ramirez, C., Renouard, D. and Stepanyants, Yu.A.: 1997, ‘Propagation of cylindrical waves in a rotating fluid’, Eur. J. Mech. B/Fluids. submitted.Google Scholar
  64. 64.
    Redekopp, L.Y.: 1983, ‘Nonlinear waves in geophysics: Long internal waves’, Lectures in Appl. Math. 20, 29–78.Google Scholar
  65. 65.
    Rosenau, P. and Hyman, N.M.: 1993, ‘Compactons: solitons with finite wavelength’, Phys. Rev. Lett. 70(5), 564–567.Google Scholar
  66. 66.
    Rybak, S.A. and Skrynnikov, Yu.I.: 1991, ‘Solitary waves in a thin constant-curvature rod’, Akust. Zhurn. 36, 548–553 (in Russian).Google Scholar
  67. 67.
    Shrira, V.I.: 1981, ‘Propagation of long nonlinear waves in a layer of rotating fluid’, Izvestiya AN SSSR. Fizika Atmosfery i Okeana 17(1), 76–81. (Engl. transl.: 1981, Izvestiya. Atm. Oceanic Phys. 17(1), 55–59.)Google Scholar
  68. 68.
    Shrira, V.I.: 1986, ‘On long strongly nonlinear waves in a rotating ocean’, Izvestiya AN SSSR, Fizika Atmosfery i Okeana 22(4), 395–405. (Engl. transl.: 1986, Izvestiya. Atm. Oceanic Phys. 22(4), 298–305.)Google Scholar
  69. 69.
    Simons, T.J.: 1978, ‘Generation and propagation of downwelling fronts’, J. Phys. Ocean. 8, 571–581.Google Scholar
  70. 70.
    Stepanyants, Yu.A.: 1981, ‘Experimental investigation of cylindrically diverging solitons in an electric lattice’, Wave Motion, 3(4), 335–341.Google Scholar
  71. 71.
    Tung, K.K., Ko, D.R.S. and Chang, J.J.: 1981, ‘Weakly nonlinear internal waves in shear’, Stud. Appl. Math. 65, 189–221.Google Scholar
  72. 72.
    Turner, J.S.: 1973, Buoyancy Effects in Fluids, Cambridge University Press.Google Scholar
  73. 73.
    Weidman, P.D. and Zakhem R.: 1988, ‘Cylindrical solitary waves’, J. Fluid Mech. 191, 557– 573.Google Scholar
  74. 74.
    Whitham, G.B.: 1974, Linear and Nonlinear Waves, Wiley–Interscience, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • R.H.J. Grimshaw
  • L.A. Ostrovsky
  • V.I. Shrira
  • Yu. A. Stepanyants

There are no affiliations available

Personalised recommendations