Origins of life and evolution of the biosphere

, Volume 27, Issue 4, pp 405–412

EVOLUTIONARY CONSIDERATION ON 5-AMINOLEVULINATE SYNTHASE IN NATURE

  • TAMIKO OH-HAMA
Article

Abstract

5-Aminolevulinic acid (ALA), a universal precursor of tetrapyrrole compounds can be synthesized by two pathways: the C5 (glutamate) pathway and ALA synthase. From the phylogenetic distribution it is shown that distribution of ALA synthase is restricted to the α subclass of purple bacteria in prokaryotes, and further distributed to mitochondria of eukaryotes. The monophyletic origin of bacterial and eukaryotic ALA synthase is shown by sequence analysis of the enzyme. Evolution of ALA synthase in the α subclass of purple bacteria is discussed in relation to the energy-generating and biosynthetic devices in subclasses of this bacteria.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, S. and Jensen, R. A.: 1988, Origins Life Evol. Biosphere 18, 41.Google Scholar
  2. Avissar, Y. J., Ormerod, J. G. and Beale, S. I.: 1989, Arch. Microbiol. 151, 513.Google Scholar
  3. Bawden, M. J., Borthwick, I. A., Healy, H, M., Morris, C. P., May, B. K. and Elliott, W. H.: 1987, Nucleic Acids Res. 15, 8563.Google Scholar
  4. Beale, S. I. and Weinstein, J. D.: 1990, in H. A. Dailey (ed.), Biosynthesis of Heme and Chlorophylls, McGraw-Hill Inc., New York, p. 287.Google Scholar
  5. Beatty, J. T. and Gest, H.: 1981, Arch. Microbiol. 129, 335.Google Scholar
  6. Berkner, L. V. and Marshall, L. C.: 1965, J. Atm. Sci. 22, 225.Google Scholar
  7. Bishop, D. F.: 1990, Nucleic Acids Res. 18, 7187.Google Scholar
  8. Borthwick, I. A., Srivastava, G., Brooker, J. D., May, B. K. and Elliott, W. H.: 1983, Eur. J. Biochem. 129, 615.Google Scholar
  9. Borthwick, I. A., Srivastava, G., Day, A. R., Pirola, B. A., Snoswell, M. A., May, B. K. and Elliott, W. H.: 1985, Eur. J. Biochem. 150, 481.Google Scholar
  10. Castelfranco, P. A. and Beale, S. I.: 1983, Annu. Rev. Plant Physiol. 34, 241.Google Scholar
  11. Cavalier-Smith, T.: 1990, in P. Nordon, V. Gianinazzi-Pearson, A. M. Grenier, L. Margulis and D. C. Smith (eds.), Endocytobiology IV, Institut Natl. Recherche Agronomique, Paris, p. 515.Google Scholar
  12. Cavalier-Smith, T.: 1992, BioSystems 28, 91.Google Scholar
  13. Colby, J., Dalton, H. and Whittenbury, R.: 1979, Annu. Rev. Microbiol. 33, 481.Google Scholar
  14. Collins, M. D. and Jones, D.: 1981, Microbiol. Rev. 45, 316.Google Scholar
  15. Dickerson, R. E.: 1980, Sci. Am. 242(No. 3), 98.Google Scholar
  16. Dierks, P.: 1990, in H. A. Dailey (ed.), Biosynthesis of Heme and Chlorophylls, McGraw-Hill Inc., New York, p. 201.Google Scholar
  17. Drolet, M. and Sasarman, A.: 1991, Mol. Gen. Genet. 226, 250.Google Scholar
  18. Elliott, T., Avissar, Y. J., Rhie, G.-E. and Beale, S. I.: 1990, J. Bacteriol. 172, 7071.Google Scholar
  19. Gest, H.: 1987, Biochem. Soc. Symp. 54, 3.Google Scholar
  20. Gray, M. W., Cedergren, R., Abel, Y. and Sankoff, D.: 1989, Proc. Natl. Acad. Sci. USA 86, 2267.Google Scholar
  21. Hamilton, J. W., Bement, W. J., Sinclair, P. R., Sinclair, J. F., Alcedo, J. A. and Wetterhahn, K. E.: 1991, Arch. Biochem. Biophys. 289, 387.Google Scholar
  22. Harel, E., Meller, E. and Rosenberg, M.: 1978, Phytochemistry 17, 1277.Google Scholar
  23. Hay, R., Böhni, P. and Gasser, S.: 1984, Biochim. Biophys. Acta 779, 65.Google Scholar
  24. Hoober, J. K., Kahn, A., Ash, D. E., Gough, S. and Kannangara, C.G.: 1988, Carlsberg Res. Commun. 53, 11.Google Scholar
  25. Hornberger, U., Liebetanz, R., Tichy, H.-V. and Drews, G.: 1990, Mol. Gen. Genet. 221, 371.Google Scholar
  26. Jordan, P. M.: 1991, in P. M. Jordan (ed.), Biosynthesis of Tetrapyrroles, Elsevier, Amsterdam, p. 1.Google Scholar
  27. Labbe-Bois, R. and Labbe, P.: 1990, in H. A. Dailey (ed.), Biosynthesis of Heme and Chlorophylls, McGraw-Hill Inc., New York, p. 235.Google Scholar
  28. Lane, D. J., Stahl, D. A., Olsen, G. J., Heller, D. J. and Pace, N. R.: 1985, J. Bacteriol. 163, 75.Google Scholar
  29. Lascelles, J., Rittenberg, B. and Clark-Walker, G. D.: 1969, J. Bacteriol. 97, 455.Google Scholar
  30. Lascelles, J.: 1978, In R. K. Clayton and W. R. Sistrom (eds.), The Photosynthetic Bacteria, Plenum Press, New York, p. 795.Google Scholar
  31. Lee, J. K. and Kaplan, S.: 1992, J. Bacteriol. 174, 1146.Google Scholar
  32. Leong, S. A., Williams, P. H. and Ditta, G.: 1985, Nucleic Acids Res. 13, 5965.Google Scholar
  33. Lloyd, A. J., Weitzman, P. D. and Söll, D.: 1993, J. Gen. Microbiol. 139, 2931.Google Scholar
  34. Lohr, J. B. and Friedmann, H. C.: 1976, Biochem. Biophys. Res. Commun. 69, 908.Google Scholar
  35. Matin, A.: 1978, Annu. Rev. Microbiol. 32, 433.Google Scholar
  36. McClung, C. R., Somerville, J. E., Guerinot, M. L. and Chelm, B. K.: 1987, Gene 54, 133.Google Scholar
  37. McKinney, C. E. and Ades, I. Z.: 1991, Int. J. Biochem. 23, 803.Google Scholar
  38. Michalski, W. P. and Nicholas, D. J. D.: 1987, J. Bacteriol. 169, 4651.Google Scholar
  39. Mukherjee, J. J. and Dekker, E. E.: 1990, Biochim. Biophys. Acta 1037, 24.Google Scholar
  40. Murakami, K., Korbrisate, S., Asahara N., Hasimoto, Y. and Murooka, Y.: 1993, Appl. Microbiol. Biotechnol. 38, 502.Google Scholar
  41. Neidle, E. L. and Kaplan, S.: 1993a, J. Bacteriol. 175, 2292.Google Scholar
  42. Neidle, E. L. and Kaplan, S.: 1993b, J. Bacteriol. 175, 2304.Google Scholar
  43. Nicolay, K., van Gemerden, H., Hellingwerf, K. J., Konings, W.N. and Kaptein, R.: 1983, J. Bacteriol. 155, 634.Google Scholar
  44. Oh-hama, T., Seto, H. and Miyachi, S.: 1985, Arch. Biochem. Biophys. 237, 72.Google Scholar
  45. Oh-hama, T., Stolowich, N. J. and Scott, A. I.: 1993, J. Gen. Appl. Microbiol. 39, 513.Google Scholar
  46. Otsuka, A. J., Buoncristiani, M. R., Howard, P. K., Flamm, J., Johnson, C., Yamamoto, R., Uchida, K., Cook, C., Ruppert, J. and Matsuzaki, J.: 1988, J. Biol. Chem. 263, 19577.Google Scholar
  47. Recipon, H., Perasso, R., Adoutte, A. and Quetier, F.: 1992, J. Mol. Evol. 34, 292.Google Scholar
  48. Riddle, R. D., Yamamoto, M. and Engel, J. D.: 1989, Proc. Natl. Acad. Sci. USA 86, 792.Google Scholar
  49. Sato, K., Ishida, K., Shirai, M. and Shimizu, S.: 1985, Agric. Biol. Chem. 49, 3423.Google Scholar
  50. Sogin, M. L., Gunderson, J. H., Elwood, H. J., Alonso, R. A. and Peattie, D. A.: 1989. Science, 243, 75.Google Scholar
  51. Spiro, S. and Guest, J. R.: 1990, FEMS Microbiol. Rev. 75, 399.Google Scholar
  52. Stackebrandt, E., Murray, R. G. E. and Trüper, H. G.: 1988, Int. J. Syst. Bacteriol. 38, 321.Google Scholar
  53. Towe, K. M.: 1985, Origin Life Evol. Biosphere 15, 235.Google Scholar
  54. Tuboi, S., Kim, H. J. and Kikuchi, G.: 1970, Arch. Biochem. Biophys. 138, 155.Google Scholar
  55. Urban-Grimal, D., Volland, C., Garnier, T., Dehoux, P. and Labbe-Bois, R.: 1986, Eur. J. Biochem. 156, 511.Google Scholar
  56. Wada, O., Sassa, S., Takaku, F., Yano, Y., Urata, G. and Nakao, K.: 1967, Biochim. Biophys. Acta 148, 585.Google Scholar
  57. Weinstein, J. D. and Beale, S. I.: 1983, J. Biol. Chem. 258, 6799.Google Scholar
  58. Werk-Reichhart, D., Jones, O. T. G. and Durst, F.: 1988, Biochem. J. 249, 473.Google Scholar
  59. Whitlock, J. P. Jr.: 1986, Annu. Rev. Pharmacol. Toxicol. 26, 333.Google Scholar
  60. Woese, C. R.: 1987, Microbiol. Rev. 51, 221.Google Scholar
  61. Yamamoto, M., Kure, S., Engel, J. D. and Hiraga, K.: 1988, J. Biol. Chem. 263, 15973.Google Scholar
  62. Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G. J. and Woese, C. R.: 1985, Proc. Natl. Acad. Sci. USA 82, 4443.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • TAMIKO OH-HAMA
    • 1
  1. 1.The Research Institute of Evolutionary BiologyTokyoJapan

Personalised recommendations