Origins of life and evolution of the biosphere

, Volume 27, Issue 4, pp 345–355 | Cite as

attempted prebiotic synthesis of pseudouridine

  • JASON P. DWORKIN

Abstract

Pseudouridine is a modified base found in all tRNA and rRNA. Hence, it is reasonable to think that pseudouridine was important in the early evolution, if not the origin, of life. Since uracil reacts rapidly with formaldehyde and other aldehydes at the C-5 position, it is plausible that pseudouridine could be synthesized in a similar way by the reaction of the C-5 of uracil with the C-1 of ribose. The determining factor is whether the ribose could react with the uracil faster than ribose decomposes. However, both rates are determined by the amount of free aldehyde in the ribose. Various plausible prebiotic reactions were investigated and none showed pseudouridine above the detection limit (<0.01%). Only unreacted uracil and ribose decomposition products could be observed. Thus the rate of addition of ribose to uracil is much slower than the decomposition of ribose under any reasonable prebiotic conditions. Unless efficient non-biological catalysts for any of these reactions exist, pseudouridine would not have been synthesized to any significant extent without the use of biologically produced enzymes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angyal, S. J.: 1984, Adv. Carbohydr. Chem. Biochem. 42, 15–68.Google Scholar
  2. Chambers, R. W., Kurkov, V. and Shapiro, R.: 1963, Biochemistry 2, 1192–1203.Google Scholar
  3. Dworkin, J. P. and Miller, S. L.: 1997, Origin Life Evol. Biosphere 26, 412–413.Google Scholar
  4. Ferris, J. P., Sanchez, R. A. and Orgel L. E.: 1968, J. Mol. Biol. 33, 693–704.Google Scholar
  5. Fuller, W. D., Sanchez, R. A. and Orgel L. E.: 1972, J. Mol. Biol. 67, 25–33.Google Scholar
  6. Fuller, W. D., Sanchez, R. A. and Orgel L. E.: 1972, J. Mol. Evol. 1, 249–257.Google Scholar
  7. Goldberg, R. N. and Tewari, Y. B.: 1989, J. Phys. Chem. Ref. Data 18, 809–880.Google Scholar
  8. Khenokh, M. A. and Kuzicheva E. A.: 1971, Dokl. Akad. Nauk SSSR 197, 464–466.Google Scholar
  9. Keefe, A. D., Newton, G. L. and Miller, S. L.: 1995, Nature 373, 683–685.Google Scholar
  10. Kolb, V. M., Dworkin, J. P. and Miller, S. L.: 1994, J. Mol. Evol. 38, 549–557.Google Scholar
  11. Lane, B. G., Ofengand, J. and Gray, M. W.: 1995, Biochimie 77, 7–15.Google Scholar
  12. Larralde, R., Robertson, M. P. and Miller, S. L.: 1995, Proc. Nat. Acad. Sci. USA 92, 8158–8160.Google Scholar
  13. Lewin, S.: 1964, J. Chem. Soc. 792–809.Google Scholar
  14. Maurel, M. C. and Convert, O.: 1990, Origin Life Evol. Biosphere 20, 43–48.Google Scholar
  15. Robertson, M. P., Dworkin, J. P. and Miller, S. L.: 1997 (in prep.).Google Scholar
  16. Robertson, M. P. and Miller, S. L.: 1995, Science 268, 702–705.Google Scholar
  17. Robertson, M. P. and Miller, S. L.: 1995, Nature 375, 772–774.Google Scholar
  18. Sanchez, R. A. and Orgel L. E.: 1970, J. Mol. Biol. 47, 531–543.Google Scholar
  19. Shapiro, R.: 1988, Origin Life Evol. Biosphere 18, 71–85.Google Scholar
  20. Smith, C. V. Z., Robins, R. K. and Tolman, R. L.: 1972, J. Org. Chem. 37, 1418–1422.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • JASON P. DWORKIN
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of California, San DiegoLa JollaU.S.A

Personalised recommendations