Observation of Indigenous Polycyclic Aromatic Hydrocarbons in ‘Giant’ carbonaceous Antarctic Micrometeorites

  • S. J. Clemett
  • X. D. F. Chillier
  • S. Gillette
  • R. N. Zare
  • M. Maurette
  • C. Engrand
  • G. Kurat
Article

Abstract

Two-step laser desorption/laser ionization mass spectrometry (μL2MS) was used to establish the nature and mass distribution of polycyclic aromatic hydrocarbons (PAHs) in fragments of fifteen ‘giant’ (∼200 μm) carbonaceous Antarctic micrometeorites (AMMs). Detectable concentrations of PAHs were observed in all AMMs showing a fine-grained matrix. The range of integrated PAH signal intensities varied between samples by over two orders of magnitude. No evidence of contamination whilst in the Antarctic environment could be found. The dramatic variation of both PAH signal intensities and mass distributions between AMMs along with comprehensive contamination checks demonstrates that particles are not exposed to terrestrial PAHs at or above detection limits, either subsequent, during or prior to collection. Comparison of the observed PAH distributions with those measured in three carbonaceous chondrites [Orgueil (CI1), Murchison (CM2) and Allende (CV3)] under identical conditions demonstrated that marked differences exist in the trace organic composition of these two sources of extraterrestrial matter. In general, AMMs show a far richer distribution of unalkylated ‘parent’ PAHs with more extended alkylation series (replacement of -H with -(CH2)_-H; n = 1, 2, 3 ...). The degree of alkylation loosely correlates with a metamorphic index that represents the extent of frictional heating incurred during atmospheric entry. A search for possible effects of the chemical composition of the fine-grain matrix of host particles on the observed PAH distributions reveals that high degrees of alkylation are associated with high Na/Si ratios. These results, in addition to other observations by Maurette, indicate that ‘giant’ micrometeorites survive hypervelocity (≥11 km s_1) atmospheric entry unexpectedly well. Because such micrometeorites are believed to represent the dominant mass fraction of extraterrestrial material accreted by the Earth, they may have played a significant role in the prebiotic chemical evolution of the early Earth through the delivery of complex organic matter to the surface of the planet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hahn, J. H., Zenobi, R., Bada, J. F. and Zare, R. N.: 1988, Science 239, 1523.Google Scholar
  2. 2.
    Zenobi, R., Philippoz, J.-M., Buseck, P. R. and Zare, R. N.: 1989, Science 246, 1026.Google Scholar
  3. 3.
    Zenobi, R., Philippoz, J.-M., Zare, R. N., Wing, M. R., Bada, J. L. and Marti, K.: 1992, Geochim. Cosmochim. Acta 56, 2899.PubMedGoogle Scholar
  4. 4.
    McKay, D. S., E. K. G. Jr., Thomas-Keprta, K. L., Vali, H., Romanek, C. S., Clemett, S. J., Chillier, X. D. F., Maechling, C. R. and Zare, R. N.: 1996, Science 273, 924.PubMedGoogle Scholar
  5. 5.
    Kovalenko, L. J., Maechling, C. R., Clemett, S. J., Phillipoz, J.M., Zare, R. N. and Alexander, C. M. O. D.: 1992, Anal. Chem. 64, 682.Google Scholar
  6. 6.
    Clemett, S. J., Maechling, C. R., Zare, R. N., Swan, P. D. and Walker, R. M.: 1993, Science 262, 721.Google Scholar
  7. 7.
    Thomas, K. L., Blanford, G. E., Clemett, S. J., Flynn, G. J., Keller, L. P., Klock, W., Maechling, C. R., Mckay, D. S., Messenger, S., Nier, A. O., Schlutter, D. J., Sutton, S. R., Warren, J. L. and Zare, R. N.: 1995, Geochimica et Cosmochemica Acta 59, 2797.Google Scholar
  8. 8.
    Clemett, S. J.: 1996, ‘Laser Microprobe Studies of Complex Aromatic Hydrocarbons on Meteorites and Interplanetary Dust Particles’, Ph.D Thesis, Stanford University.Google Scholar
  9. 9.
    Whipple, F. L.: 1951, Proc. N.A.S., USA 37, 19.Google Scholar
  10. 10.
    Love, S. G. and Brownlee, D. E.: 1991, Icarus 89, 26.Google Scholar
  11. 11.
    Maurette, M.: 1996, ‘Carbonaceous Micrometeorites and the Origin of Life’, Proc. 11th Int. Conf. Origin of Life (in press).Google Scholar
  12. 12.
    Engrand, C., Michel-Levy, M. C., Jouret, C., Kurat, G., Maurette, M. and Perreau, M.: 1994, Meteoritics 29, 464.Google Scholar
  13. 13.
    Maurette, M., Bonny, P., Brack, A., Jouret, C., Pourchet, M. and Siry, P.: 1991, Lecture Notes in Physics 390, 124.Google Scholar
  14. 14.
    Hammer, C. and Maurette, M.: 1996, Meteoritics 31, A56.Google Scholar
  15. 15.
    Love, S. G. and Brownlee, D. E.: 1993, Science 262, 550.Google Scholar
  16. 16.
    Brownlee, D. E.: 1985, Ann. Rev. Earth Planet. Sci. 13, 147.Google Scholar
  17. 17.
    Brinton, K. L., Engrand, C., Bada, G. and Maurette, M.: 1996, ‘The Search for Amino Acids in ‘Giant’ Carbonaceous Micrometeorites from Antarctica’, Proc. 11th Int. Conf. Origin Life (in press).Google Scholar
  18. 18.
    Maurette, M., Brack, A., Kurat, G., Perreau, M. and Engrand, C.: 1995 Adv. Space Res. 15, 113.PubMedGoogle Scholar
  19. 19.
    Maurette, M., Immel, G., Hammer, C., Harvey, R., Kurat, G. and Taylor, S.: 1994, ‘Collection and Curation of IDPs from the Greenland and Antarctic Ice Sheets’, in Zolensky, M. E., Wilson, T. L., Rietmeijer F. J. M. and Flynn, G. (eds.), Analysis of Interplanetary Dust, New York: Amer. Inst. Physics, pp. 277–289.Google Scholar
  20. 20.
    Maechling, C. R., Clemett, S. J., Engelke, F. and Zare, R. N.: 1996, J. Chem. Phys. 104, 8768.Google Scholar
  21. 21.
    Pappas, D. L., Hrubowchak, D. M., Ervin, M. H. and Winograd, N.: 1989, Science 243, 64.Google Scholar
  22. 22.
    Winograd, N., Baxter, J. P. and Kimock, F. M.: 1982, Chem. Phys. Lett. 82, 581.Google Scholar
  23. 23.
    Shibanov, A. N.: 1985, Laser Analytical Spectrochemistry: Adam Hilger, Bristol.Google Scholar
  24. 24.
    Zenobi, R. and Zare, R. N.: 1991, ‘Two-Step Laser Mass Spectrometry’, in Lin, S. H. (ed.), Advances in Multiphoton Processes and Spectroscopy, 7, Singapore: World Scientific, pp. 1–167.Google Scholar
  25. 25.
    Zolensky, M. and McSween, J. H. Y.: 1988, ‘Aqueous Alteration’, in Kerridge, J. F. and Matthews, M. S. (eds.), Meteorites and the Early Solar System, Space Science Series, Tuscon: The University of Arizona Press, pp. 114–143.Google Scholar
  26. 26.
    McSween, H. Y., Sears, D.W. G. and Dodd, R. T.: 1988, ‘Thermal Metamorphism’, in Kerridge, J. F. and Matthews, M. S. (eds.), Meteorites and the Early Solar System, Space Science Series, Tuscon: The University of Arizona Press, pp. 102–114.Google Scholar
  27. 27.
    Brack, A.: 1996, ‘Why Exobiology on Mars’, Planet. Space Sci. (in press).Google Scholar
  28. 28.
    Clemett, S. J., Messenger, S., Chillier, X. D. F., Gao, X., Walker, R. M. and Zare, R. N.: 1996, ‘Indigenious Polycyclic Aromatic Hydrocarbon Molecules in Circumstellar Graphite Grains’, Lunar and Planetary Science XXVII, pp. 229–230.Google Scholar
  29. 29.
    v. Schmus, W. R. and Wood, J. A.: 1967, Geochimica et Cosmochimica Acta, 31, 747.Google Scholar
  30. 30.
    McSween, H. Y.: 1979, Rev. Geophys. Space Phys. 17, 1059.Google Scholar
  31. 31.
    Sears, D.W. G. and Dodd, R. T.: 1988, ‘Overview and Classification ofMeteorites’, in Kerridge, J. F. and Matthews, M. S. (eds.), Meteorites and the Early Solar System, Space Science Series, Tuscon: The University of Arizona Press, pp. 3–31.Google Scholar
  32. 32.
    Flynn, G. J.: 1995, ‘Chemical Composition of Large Stratospheric Dust Particles: Composition of Large Stratospheric Dust Particles: Comparison with Stratospheric IDPs, Cluster Fragments, and Polar Micrometeorites’, Lunar and Planetary Science XXVI, pp. 407–408.Google Scholar
  33. 33.
    Flynn, G. J.: 1995, ‘Thermal Gradients in Interplanetary Dust Particles: The Effect of an Endothermic Phase Transition’, Lunar and Planetary Science XXVI, pp. 405–406.Google Scholar
  34. 34.
    Engrand, C., Deloule, E., Maurette, M., Kurat, G. and Robert, F.: 1996, Meteoritics 31, A43.Google Scholar
  35. 35.
    Shock, E. L. and Schulte, M. D.: 1990, Nature 343, 728.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • S. J. Clemett
    • 1
  • X. D. F. Chillier
    • 1
  • S. Gillette
    • 1
  • R. N. Zare
    • 1
  • M. Maurette
    • 2
  • C. Engrand
    • 2
    • 3
  • G. Kurat
    • 3
  1. 1.Department of ChemistryStanford UniversityStanfordU.S.A.
  2. 2.C.S.N.S.M.Orsay-CampusFrance
  3. 3.Mineralogische AbteilungNaturhistorisches MuseumAustria

Personalised recommendations