Advertisement

Annals of Global Analysis and Geometry

, Volume 16, Issue 2, pp 101–140 | Cite as

An Operator Algebra on Manifolds with Cusp-Type Singularities

  • Bert-Wolfgang Schulze
  • Boris Sternin
  • Victor Shatalov
Article
  • 46 Downloads

Abstract

Equations on manifolds with cusp-type singularities are investigated. The corresponding calculus of pseudodifferential operators is constructed and finiteness theorems (Fredholm property) are established. The resurgent character of solutions is proved for equations with infinitely flat right-hand side.

asymptotic expansions Borel–Laplace transform cusps ellipticity elliptic theory endless continuability finiteness theorem Fredholm property left ordered representation local casp algebra manifolds with singularities noncommutative analysis regularizer resurgent analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kondrat’ev, V. A.: Boundary problems for elliptic equations in domains with conical or angular points, Trans. of Moscow Math. Soc. 16 (1967), 287–313. English transl. from: Trudy Mosk. Mat. Obshch. 15 (1966), 400–451.Google Scholar
  2. 2.
    Schulze, B.W.: Pseudodifferential Operators on Manifolds with Singularities, NorthHolland, Amsterdam, 1991.Google Scholar
  3. 3.
    Melrose, R.: The Atiyah-Patodi-Singer Index Theorem, Research Notes in Mathematics. A. K. Peters, Wellesley, MA, 1993.Google Scholar
  4. 4.
    Maz’ya, V. G. and Plamenevskii, B. A.: On the asymptotic solution of the Dirichlet problem near the isolated singularity of the boundary, Vestnik Leningrad Univ. Math. 13 (1977), 60–66. English transl. in: Vestnik Leningrad Univ. Math. 10 (1982), 295–302.Google Scholar
  5. 5.
    Maz’ya, V. G. and Plamenevskii, B. A.: On the asymptotic of solutions of differential equations with operator coefficients, DAN SSSR 196 (1971), 512–515. English transl. in: Soviet Math. Dokl. 12 (1971), 35–37.Google Scholar
  6. 6.
    Kozlov, V. A., Maz’ya V. G. and Rossman, J.: Elliptic Boundary Value Problems in Domains with Point Singularities, Math. Surveys and Monographs, Vol. 52, American Mathematical Society, Providence, RI, 1997.Google Scholar
  7. 7.
    Nazarov, S. A. and Plamenevsky, B. A.: Elliptic Problems in Domains with Piecewise Smooth Boundaries. De Gruyter Expositions in Mathematics, Vol. 13, Walter de Gruyter Publishers, Berlin/New York, 1994.Google Scholar
  8. 8.
    Schulze, B.W., Sternin, B. and Shatalov, V.: Operator algebras on cuspidal wedges, Max-Planck Institut für Mathematik, Bonn, 1996. Preprint MPI 96137.Google Scholar
  9. 9.
    Schulze, B.W., Sternin, B. and Shatalov, V.: Operator algebras associated with resurgent transforms and differential equations on manifolds with singularities, Université de Nice Sophia Antipolis, Nice, 1997. Preprint N 481.Google Scholar
  10. 10.
    Brüning, J.: The signature theorem for manifolds with metric horns, Humboldt-Universit ät, Berlin, 1996. Sfb 288. Differentialgeometrie und Quantenphysik. Preprint No. 221.Google Scholar
  11. 11.
    Lesch, M. and Peyerimhoff, N.: On index formulas for manifolds with metric horns, Institut für Mathematik der Universität Augsburg, Augsburg, 1995. Preprint 337.Google Scholar
  12. 12.
    Lesch, M.: Differential Operators of Fuchs Type, Conical Singularities, and Asymptotic Methods, Teubner-Tete zur Mathematik, Vol. 136, B. G. Teubner Verlag, Stuttgart/Leipzig, 1997.Google Scholar
  13. 13.
    Schulze, B.W., Sternin, B. and Shatalov, V.: An operator algebra on manifolds with cusp-type singularities, Max-Planck Institut für Mathematik, Bonn, 1996. Preprint MPI 96111.Google Scholar
  14. 14.
    Maslov, V. P.: Operator Methods, Nauka, Moscow, 1973. English transl.: Operational Methods, Mir, Moscow, 1976.Google Scholar
  15. 15.
    Maslov, V. P.: Application of the method of ordered operators to obtain exact solutions, Theoret. and Math. Phys. 33(2) (1977), 960–976.Google Scholar
  16. 16.
    Maslov, V. and Nazaikinskii, V.: Asymptotics of Operator and Pseudo-Differential Equations, Plenum Publishing Corp., New York, 1988.Google Scholar
  17. 17.
    Nazaikinskii, V., Sternin, B. and Shatalov, V.: Introduction toMaslov’s operational method (nonvommutative analysis and differential equations, in Yu. Borisovich (ed.), Global Analysis – Studies and Applications, V, Lecture Notes in Math., Vol. 1520, SpringerVerlag, Berlin/Heidelberg, 1992, pp. 81–91.Google Scholar
  18. 18.
    Nazaikinskii, V., Sternin, B. and Shatalov, V.: Maslov’s operational calculus and nonvommutative analysis, in M. Demuth and B.W. Schulze (eds), Operator Calculus and Spectral Theory, Operator Theory: Advances and Applications, Vol. 57, Birkhäuser, Basel, 1992, pp. 225–243.Google Scholar
  19. 19.
    Karasev, M. V. and Maslov, V. P.: Nonlinear Poisson Brackets. Geometry and Quantization, volume Transl. of Math. Monographs, Vol. 119, AMS, Providence, RI, 1993. Translated from Russian.Google Scholar
  20. 20.
    Nazaikinskii, V., Sternin, B. and Shatalov, V.: Methods of Noncommutative Analysis. Theory and Applications. Mathematical Studies, Vol. 22, Walter de Gruyter Publishers, Berlin/New York, 1995.Google Scholar
  21. 21.
    Maslov, V. P.: Nonstandard characteristics in asymptotic problems, Russian Math. Surveys 38(6) (1983), 1–42.Google Scholar
  22. 22.
    Schulze, B.W., Sternin, B. and Shatalov, V.: Structure rings of singularities and differential equations, in M. Demuth and B.W. Schulze (eds), Differential Equations, Asymptotic Analysis, and Mathematical Physics, Mathematical Research, Vol. 100, Akademie Verlag, Berlin, 1996, pp. 325–347.Google Scholar
  23. 23.
    Agranovich, M. and Vishik, M.: Elliptic problems with parameter and parabolic problems of general type, Uspekhi Mat. Nauk 19(3) (1964), 53–161 [in Russian].Google Scholar
  24. 24.
    Schulze, B.W., Sternin, B. and Shatalov, V.: Resurgent analysis in the theory of differential equations with singularities, Matematische Nachrichten 170 (1994), 1–21.Google Scholar
  25. 25.
    Sternin, B. and Shatalov, V.: Borel–Laplace Transform and Asymptotic Theory, CRC-Press, Boca Raton, FL, 1996.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Bert-Wolfgang Schulze
    • 1
  • Boris Sternin
    • 2
  • Victor Shatalov
    • 2
  1. 1.MPAG "Analysis"Potsdam UniversityPotsdamGermany
  2. 2.Department of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia

Personalised recommendations