Aha, D. W. (1990). A Study of Instance-Based Algorithms for Supervised Learning Tasks: Mathematical, Empirical and Psychological Evaluations. PhD. Thesis; Technical Report No. 90–42, University of California, Irvine.

Google ScholarAtkeson, C. G., Moore, A. W. & Schaal, S. A. (1997). Locally Weighted Learning. *AI Review*, this issue.

Atkeson, C. G. (1990). Memory-Based Approaches to Approximating Continuous Functions. In *1990 Workshop on Nonlinear Modeling and Forecasting*. Adison-Wesley.

Bottou, L. & Vapnik, V. (1992). Local Learning Algorithms.

*Neural Computation*
**4**: 888–900.

Google ScholarBox, G. E. P., Hunter, W. G. & and Hunter, J. S. (1978). *Statistics for Experimenters*. Wiley.

Caruana, R. A. & and Freitag, D. (1994). Greedy Attribute Selection. In *Machine Learning: Proceedings of the Eleventh International Conference*, pp. 28–36. Morgan Kaufmann.

Cleveland, W. S., Devlin, S. J. & Grosse, E. (1988). Regression by local fitting: Methods, properties, and computational algorithms.

*Journal of Econometrics*
**37**: 87–114.

Google ScholarConte, S. D. & De Boor, C. (1980). *Elementary Numerical Analysis*. McGraw Hill.

Dasarathy, B. V. (1991). *Nearest Neighbor Norms: NN Patern Classifaction Techniques*. IEEE Computer Society Press.

Efron, B. & Tibshirani, R. (1991). Statistical Data Analysis in the Computer Age.

*Science*
**253**: 390–395.

Google ScholarFix, E. & Hodges, J. L. (1951). Discriminatory Analysis: Nonparametric Discrimination: Consistency Properties. Project 21–49–004, Report Number 4, USAF School of Aviation Medicine.

Goldberg, D. (1989).

*Genetic Algorithms in Search, Optimization and Machine Learning*. Reading, MA: Addison-Wesley.

Google ScholarGratch, J., Chien, S. & DeJong, G. (1993). Learning Search Control Knowledge for Deep Space Network Scheduling. In *Proceedings of the 10th International Conference on Machine Learning*, pp. 135–142. Morgan Kaufmann.

Gratch, J. (1994). An effective method for correlated selection problems. Department of Computer Science Technical Report Num. 1893, University of Illinois at Urbana-Champaign.

Google ScholarGreiner, R. & Jurisca, I. (1992). A statistical approach to solving the EBL utility problem. In *Proceedings of the Tenth International conference on Artificial Intelligence*, pp. 241–248. MIT Press.

Hastie, T. J. & Tibshirani, R. J. (1990). *Generalized additive models*. Chapman and Hall.

Haussler, D. (1992). Decision theoretic generalizations of the pac model for neural net and other learning applications.

*Information and Computation*
**100**: 78–150.

Google ScholarHoeffding, W. (1963). Probability inequalities for sums of bounded random variables.

*Journal of the American Statistical Association*
**58**: 13–30.

Google ScholarJohn, G. H., Kohavi, R. & Pfleger, K. (1994). Irrelevant features and the Subset Selection Problem. In *Machine Learning: Proceedings of the Eleventh International Conference*, pp. 121–129. Morgan Kaufmann.

Kaelbling, L. P. (1990). Learning in Embedded Systems. PhD. Thesis; Technical Report No. TR–90–04, Stanford University, Department of Computer Science.

Kreider, J. F. & Haberl, J. S. (1994). Predicting hourly building energy usage: The great energy predictor shootout — Overview and discussion of results. Transactions of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, 100, Part 2.

Lowe, D. G. (1995). Similarity metric learning for a variable-kernel classifier.

*Neural Computation*
**7**: 72–85.

Google ScholarMaron, O. & Moore, A. W. (1994). Hoeffding Races: Accelerating model selection search for classification and function approximation. In Cowan, J. D., Tesauro, G. & Alspector, J. (eds.), *Advances in Neural Information Processing Systems 6*. Morgan Kaufmann.

Maron, O. (1994). Hoeffding Races: Model Selection for MRI Classification. Masters Thesis, Dept. of Electrical Engeineering and Computer Science, M.I.T.

Miller, A. J. (1990). *Subset Selection in Regression*. Chapman and Hall.

Moore, A. W. & Lee, M. S. (1994). Efficient Algorithms for Minimizing Cross Validation Error. In *Machine Learning: Proceedings of the Eleventh International Conference*, pp. 190–198. Morgan Kaufmann.

Moore, A. W., Hill, D. J. & Johnson, M. P. (1992). An empirical investigation of brute force to choose features, smoothers and function approximators. In Hanson, S., Judd, S. & Petsche, T. (eds.), *Computational Learning Theory and Natural Learning Systems, Volume 3*. MIT Press.

Moore, A. W. (1992). Fast, robust adaptive control by learning only forward models. In Moody, J. E., Hanson, S. J. & Lippman, R. P. (eds.), *Advances in Neural Information Processing Systems 4*. Morgan Kaufmann.

Murphy, P. M. (1996). UCI repository of machine learning databases. For more information contact ml-repository@ics.uci.edu.

Omohundro, S. (1993). Private communication.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. (1992).

*Numerical Recipes in C: the art of scientific computing*. New York: Cambridge University Press, second edition.

Google ScholarRivest, R. L. & Yin, Y. (1993). Simulation Results for a new two-armed bandit heuristic. Technical report, Laboratory for Computer Science, M.I.T.

Schaal, S. & Atkeson, C. G. (1993). Open loop stable control strategies for robot juggling. In *Proceedings of IEEE conference on Robotics and Automation*.

Schmitt, S. A. (1969). *Measuring Uncertainty: An elementary introduction to Bayesian Statistics*. Addison-Wesley.

Skalak, D. B. (1994). Prototype and Feature Selection by Sampling and Random Mutation Hill Climbing Algorithms. In *Machine Learning: Proceedings of the Eleventh International Conference*, pp. 293–301. Morgan Kaufmann.

Weiss, S. M. & Kulikowski, C. A. (1991).

*Computer systems that learn: Classification and prediction methods from statistics, neural nets, machine learning, and expert systems*. San Mateo, CA: Morgan-Kaufmann.

Google ScholarWelch, B. L. (1937). The significance of the difference between two means when the population variances are unequal. *Biometrika*
**29**.

Zhang, X, Mesirov, J. P. & Waltz, D. L. (1992). Hybrid system for protein secondary structure prediction.

*Journal of Molecular Biology*
**225**: 1049–1063.

Google Scholar