Surveys in Geophysics

, Volume 19, Issue 4, pp 339–368 | Cite as

Three-Dimensional Gravity Modeling In All Space

  • Xiong Li
  • Michel Chouteau


We review available analytical algorithms for the gravity effect and gravity gradients especially the vertical gravity gradient due to a right rectangular prism, a right polygonal prism, and a polyhedron. The emphasis is placed on an investigation of validity, consistency, and especially singularities of different algorithms, which have been traditionally proposed for calculation of the gravity effect on ground (or outside anomalous bodies), when they are applied to all points in space. The rounding error due to the computer floating point precision is estimated. The gravity effect and vertical gradient of gravity in three dimensions caused by a cubic model are calculated by different types of algorithms. The reliability of algorithms for the calculation of gravity of a right polygonal prism and a polyhedron is further verified by using a regular polygonal prism approximating a vertical cylinder and a regular polyhedron approximating a sphere, respectively. By highlighting Haáz-Jung-Plouff and Okabe-Steiner-Zilahi-Sebess' formulae for a right rectangular prism, Plouff's algorithm for a right polygonal prism, and Gouml;tze and Lahmeyer's algorithm for a polyhedron and removing their singularities, we demonstrate that these formulae and algorithms can be used to model the gravity anomaly and its vertical gradient at all possible computation positions.

three-dimensional body gravity gravity gradient forward modeling all space singularity rounding error 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ansel, E. A.: 1936, ‘Massenanziehung begrenzter homogener Körper von rechteckigem Querschnitt und des Kreiszylinders’, Beiträge zur Angewandten Geophysik 5, 263–295.Google Scholar
  2. Baranov, V.: 1957, ‘A new method for interpretation of aeromagnetic maps: pseudo-gravimetric anomalies’, Geophysics 22, 359–383.Google Scholar
  3. Barnett, C. T.: 1976, ‘Theoretical modeling of the magnetic and gravitational fields of an arbitrarily shaped three-dimensional body’, Geophysics 41, 1353–1364.Google Scholar
  4. Blakely, R. J.: 1995, Potential Theory in Gravity and Magnetic Applications, Cambridge University Press.Google Scholar
  5. Bott, M. H. P.: 1963, ‘Two methods applicable to computers for evaluating magnetic anomalies due to finite three dimensional bodies’, Geophysical Prospecting 11, 292–299.Google Scholar
  6. Broome, J.: 1992, ‘An IBM-compatible program for interactive three-dimensional gravity modeling’, Computers & Geosciences 18, 337–348.Google Scholar
  7. Elkins, T. A.: 1966, ‘Vertical gradient of gravity on axis for hollow and solid cylinders’, Geophysics, 31, 816–820.Google Scholar
  8. Everest, G.: 1830, An Account of the Measurement of an Arc of the Meridian Between the Parallels of 18°3′ and 24°7′, London.Google Scholar
  9. Forsberg, R.: 1984, ‘A study of terrain corrections, density anomalies, and geophysical inversion methods in gravity field modeling’, Report 355, Department of Geodetic Science and Surveying, Ohio State University.Google Scholar
  10. Golizdra, G. Ya.: 1981, ‘Calculation of the gravitational field of a polyhedra’, Izvestiya Academy of Sciences, USSR, Physics of the Solid Earth 17, 625–628.Google Scholar
  11. Goodacre, A. K.: 1973, ‘Some comments on the calculation of the gravitational and magnetic attraction of a homogeneous rectangular prism’, Geophysical Prospecting 21, 66–69.Google Scholar
  12. Götze, H.-J., and Lahmeyer, B.: 1988, ‘Application of three-dimensional interactive modeling in gravity and magnetics’, Geophysics 53, 1096–1108.Google Scholar
  13. Grant, F. S., and West, G. F.: 1965, Interpretation Theory in Applied Geophysics, McGraw-Hill Book Company, Inc., New York.Google Scholar
  14. Haáz, I. B.: 1953, ‘Relation between the potential of the attraction of the mass contained in a finite rectangular prism and its first and second derivatives’, Geofizikai Közlemenyek 2(7). (in Hungarian)Google Scholar
  15. Holstein, H., and Ketteridge, B.: 1996, ‘Gravimetric analysis of uniform polyhedra’, Geophysics 61, 357–364.Google Scholar
  16. Ivan, M.: 1990, ‘Comment on “Optimum expression for computation of the gravity field of a homogeneous polyhedral body” by V. Pohánka’, Geophysical Prospecting 38, 331–332.Google Scholar
  17. Jung, K.: 1961, Schwerkraft verfahren in der Angewandten Geophysik, Akademisches Verlag, Leipzig.Google Scholar
  18. Kolbenheyer, T.: 1963, ‘Beitrag zur Theorie der Schwerewirkungen homogener prismatischer Körper’, Studia Geophysica et Geodaetica no. 3, 233–239.Google Scholar
  19. Kwok, Y. K.: 1989, ‘Conjugate complex variables method for the computation of gravity anomalies’, Geophysics 54, 1629–1637.Google Scholar
  20. Kwok, Y. K.: 1991a, ‘Singularities in gravity computation for vertical cylinders and prisms’, Geophysical Journal International 104, 1–10.Google Scholar
  21. Kwok, Y. K.: 1991b, ‘Gravity gradient tensors due to a polyhedron with polygonal facets’, Geophysical Prospecting 39, 435–443.Google Scholar
  22. LaFehr, T. R.: 1983, ‘Rock density from borehole gravity surveys’, Geophysics 48, 341–356.Google Scholar
  23. MacMillan, W. D.: 1930, The Theory of the Potential, McGraw-Hill Book Company, Inc., New York.Google Scholar
  24. Müller, P.: 1964, ‘Simultane Gravimetrische Bestimmung der Gerteinsdichte und des Schwerefeldes in der Erdkruste, Dissertation ETH, 1963’, Schweizerische Zeitschrift für Vermessung, Kulturtechnik und Photogrammetrie 62.Google Scholar
  25. Nagy, D.: 1966, ‘The gravitational attraction of a right rectangular prism’, Geophysics 31, 362–371.Google Scholar
  26. Okabe, M.: 1979, ‘Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies’, Geophysics 44, 730–741.Google Scholar
  27. Paul, M. K.: 1974, ‘The gravity effect of a homogeneous polyhedron for three-dimensional interpretation’, Pure and Applied Geophysics 112, 553–561.Google Scholar
  28. Plouff, D.: 1966, ‘Digital terrain corrections based on geographic coordinates’, Geophysics 31, 1208.Google Scholar
  29. Plouff, D.: 1975, ‘Derivation of formulas and FORTRAN programs to compute gravity anomalies of prisms’, National Technical Information Service No. PB-243-526, U. S. Department of Commerce, Springfield, VA.Google Scholar
  30. Plouff, D.: 1976, ‘Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections’, Geophysics 41, 727–741.Google Scholar
  31. Pohánka, V.: 1988, ‘Optimum expression for computation of the gravity field of a homogeneous polyhedral body’, Geophysical Prospecting 36, 733–751.Google Scholar
  32. Pohánka, V.: 1990, ‘Reply to comment by M. Ivan’, Geophysical Prospecting 38, 333–335.Google Scholar
  33. Sorokin, L. V.: 1951, Gravimetry and Gravimetrical Prospecting, State Technology Publishing, Moscow. (in Russian)Google Scholar
  34. Steiner, F., and Zilahi-Sebess, L.: 1988, Interpretation of Filtered Gravity Maps, Akade'miai Kiado', Budapest, (translated by G. Korvin, Distributed by H. Stillman Publishers, Boca Raton, Florida).Google Scholar
  35. Strakhov, V. N.: 1978, ‘Use of the methods of the theory of functions of a complex variable in the solution of three-dimensional direct problems of gravimetry and magnetometry’, Doklady Akademii Nauk SSSR 243, 70–73.Google Scholar
  36. Strakhov, V. N., Lapina, M. I., and Yefimov, A. B.: 1986, ‘A soultion of forward problems in gravity and magnetism with new analytical expressions for the field elements of standard approximating bodies, I’, Izvestiya Academy of Sciences, USSR, Physics of the Solid Earth 22, 471–482.Google Scholar
  37. Talwani, M., and Ewing, M.: 1960, ‘Rapid computation of gravitational attraction of three-dimensional bodies of arbitrary shape’, Geophysics 25, 203–225.Google Scholar
  38. Talwani, M.: 1965, ‘Computation with the help of a digital computer of magnetic anomalies caused by bodies of arbitrary shape’, Geophysics 30, 797–817.Google Scholar
  39. Talwani, M.: 1973, ‘Computer usage in the computation of gravity anomalies’, in B. A. Bolt (ed.), Methods in Computational Physics 13, Academic Press, pp. 343–389.Google Scholar
  40. Xia, H., Hansen, R., Harthill, H., and Traynin, P.: 1993, ‘Interactive modeling of potential fields in three-dimensions’, Expanded Abstracts of the 63rd Annual Meeting, Society of Exploration Geophysicists, pp. 403–404.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Xiong Li
  • Michel Chouteau

There are no affiliations available

Personalised recommendations