Hydrogen Consumption by Methanogens on the Early Earth

  • Timothy A. Kral
  • Keith M. Brink
  • Stanley L. Miller
  • Christopher P. McKay
Article

Abstract

It is possible that the first autotroph used chemical energy rather than light. This could have been the main source of primary production after the initial inventory of abiotic organic material had been depleted. The electron acceptor most readily available for use by this first chemoautotroph would have been CO2. The most abundant electron donor may have been H2 that would have been outgassing from volcanoes at a rate estimated to be as large as 1012 moles yr−1, as well as from photo-oxidation of Fe+2. We report here that certain methanogens will consume H2 down to partial pressures as low as 4 Pa (4 × 10−5 atm) with CO2 as the sole carbon source at a rate of 0.7 ng H2 min−1 μg−1 cell protein. The lower limit of pH2 for growth of methanogens can be understood on the basis that the pH2 needs to be high enough for one ATP to be synthesized per CO2 reduced. The pH2 values needed for growth measured here are consistent with those measured by Stevens and McKinley for growth of methanogens in deep basalt aquifers. H2-consuming autotrophs are likely to have had a profound effect on the chemistry of the early atmosphere and to have been a dominant sink for H2 on the early Earth after life began rather than escape from the Earth's atmosphere to space.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boone, D. R., Johnson, R. L. and Liu, Y.: 1989, Appl. Environ. Microbio. 55, 1735.Google Scholar
  2. Boston, P. J., Ivanov, M. V. and McKay, C. P.: 1992, Icarus 95, 300.Google Scholar
  3. Braterman, P. S., Cairns-Smith, A. G. and Sloper, R. W.: 1983, Nature 303, 163.Google Scholar
  4. Caldeira, K. and Kasting, J. F.: 1992, Nature 359, 226.Google Scholar
  5. Chang, S. D, DesMarais, D., Mack, R., Miller, S. L. and Strathearn, G. E.: 1983, in Schopf, J. W. (ed.), Earth's Earliest Biosphere, Princeton University Press, Princeton, pp. 53–92.Google Scholar
  6. Davis, W. L. and McKay, C. P.: 1996, Origins Life Evol. Biosphere 26, 61.Google Scholar
  7. Encrenaz, T.: 1986, Adv. Space Res 6, 237.Google Scholar
  8. Holland H. D.: 1978, The Chemistry of the Atmosphere and Oceans, Wiley, New York.Google Scholar
  9. Hungate, R. E.: 1969, in Norris, J. R. and Ribbons, D.W. (eds.), Methods in Microbiology, Academic Press, New York, pp. 117–132.Google Scholar
  10. Irvine, W. M. and Knacke, R. F.: 1989, in Atreya, S. K., Pollack, J. B. and Matthews, M. S. (eds.), Origin and Evolution of Planetary and Satellite Atmospheres, University of Arizona Press, Tucson, pp. 3–34.Google Scholar
  11. Kasting, J. F., Eggler, D. H. and Raeburn, S. P.: 1993, Geology 101, 245.Google Scholar
  12. Kissel, J. and Krueger, F. R.: 1987, Nature 326, 755.Google Scholar
  13. Lovley, D. R.: 1985, Appl. Environ. Microbio. 49, 1530.Google Scholar
  14. Lovley, D. R. and Ferry, J. G.: 1985, Appl. Environ. Microbio. 49, 247.Google Scholar
  15. Lovley, D. R. and Goodwin, S.: 1988, Geochim. Cosmochim. Acta 52, 2993.Google Scholar
  16. Margulis, L.: 1970, Origin of Eukaryotic Cells, Yale University Press, New Haven, Conn.Google Scholar
  17. Miller, S. L.: 1953, Science 117, 528.Google Scholar
  18. Miller, S. L.: 1992, in Schopf, J. W. (ed.), Major Events in the History of Life, Jones and Bartlett, Boston, pp. 1–28.Google Scholar
  19. Miller, S. L. and Smith-Magowan, D.: 1990, J. Phys. Chem. Ref. Data 19, 1049.Google Scholar
  20. Ni, S. and Boone, D. R.: 1991, Int. J. Syst. Bacteriol. 41, 410.Google Scholar
  21. Sagan, C., Khare, B. N. and Lewis, J. S.: 1984, in Gehrels, T. and Matthews, M. S. (eds.), Saturn, University of Arizona Press, Tucson, pp. 788–805.Google Scholar
  22. Stanley, J. T.: 1989, ed. Bergey's Manual of Systematic Bacteriology, Vol 3. Williams and Wilkins, Baltimore.Google Scholar
  23. Stevens, T. O. and McKinley, J. P.: 1995, Science 270, 450.Google Scholar
  24. Stull, D. R., Westrum, E. F. and Sinke, G. C.: 1969, The Chemical Thermodynamics of Organic Compounds, John Wiley & Sons, New York.Google Scholar
  25. Wüchtershüuser, G.: 1990, Origins Life Evol. Biosphere 20, 173.Google Scholar
  26. Walker, J. C. G.: 1977, Evolution of the Atmosphere, Macmillan Publishing, New York.Google Scholar
  27. Wilhelm, E., Battino, R. and Wilcock, R. J.: 1977, Chem. Rev. 77, 219.Google Scholar
  28. Xun, L., Boone, D. R. and Mah, R. A.: 1988, Appl. Environ. Microbio. 54, 2064.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Timothy A. Kral
    • 1
  • Keith M. Brink
    • 1
  • Stanley L. Miller
    • 2
  • Christopher P. McKay
    • 3
  1. 1.Department of Biological SciencesUniversity of ArkansasFayettevilleU.S.A.
  2. 2.Department of Chemistry and BiochemistryUniversity of CaliforniaDan Diego, La JollaU.S.A.
  3. 3.Space Science Division, NASA Ames Research CenterMoffett FieldU.S.A.

Personalised recommendations