Advertisement

Annals of Global Analysis and Geometry

, Volume 16, Issue 6, pp 573–596 | Cite as

Extrinsic Bounds for Eigenvalues of the Dirac Operator

  • Christian Bär
Article

Abstract

We derive upper eigenvalue bounds for the Dirac operator of a closed hypersurface in a manifold with Killing spinors such as Euclidean space, spheres or hyperbolic space. The bounds involve the Willmore functional. Relations with the Willmore inequality are briefly discussed. In higher codimension we obtain bounds on the eigenvalues of the Dirac operator of the submanifold twisted with the spinor bundle of the normal bundle.

Dirac operator eigenvalue estimates hypersurfaces mean curvature submanifolds Willmore functional 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.: Eigenvalues of the Dirac operator, in Arbeitstagung 1984, Springer Lecture Notes, Vol. 1111, Springer-Verlag, Berlin, 1985, pp. 251-260.Google Scholar
  2. 2.
    Anghel, N.: Extrinsic upper bounds for eigenvalues of Dirac-type operators, Proc. Amer. Math. Soc. 117(1993), 501-509.Google Scholar
  3. 3.
    Bär, C.: Upper eigenvalue estimates for Dirac operators, Ann. Global Anal. Geom. 10(1992), 171-177.Google Scholar
  4. 4.
    Bär, C.: Lower eigenvalue estimates for Dirac operators, Math. Ann. 293(1992), 39-46.Google Scholar
  5. 5.
    Bär, C.: Real Killing spinors and holonomy, Comm. Math. Phys. 154(1993), 509-521.Google Scholar
  6. 6.
    Baum, H.: An upper bound for the first eigenvalue of the Dirac operator on compact spin manifolds, Math. Z. 206(1991), 409-422.Google Scholar
  7. 7.
    Baum, H.: Complete Riemannian manifolds with imaginary Killing spinors, Ann. Global Anal. Geom. 7(1989), 205-226.Google Scholar
  8. 8.
    Berline, N., Getzler, E. and Vergne, M.: Heat Kernels and Dirac Operators, Springer-Verlag, Berlin, 1991.Google Scholar
  9. 9.
    Bunke, U.: Upper bounds of small eigenvalues of the Dirac operator and isometric immersions, Ann. Global Anal. Geom. 9(1991), 109-116.Google Scholar
  10. 10.
    Friedrich, T.: Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nicht-negativer Krümmung, Math. Nachr. 97(1980), 117-146.Google Scholar
  11. 11.
    Hertrich-Jeromin, U and Pinkall, U.: Ein Beweis der Willmoreschen Vermutung für Kanaltori, J. Reine Angew. Math. 430(1992), 21-34.Google Scholar
  12. 12.
    Hitchin, N.: Harmonic spinors, Adv. Math. 14(1974), 1-55.Google Scholar
  13. 13.
    Langer, J. and Singer, D.: Curves in the hyperbolic plane and mean curvature of tori in 3-space, Bull. London Math. Soc. 16(1984), 531-534.Google Scholar
  14. 14.
    Lawson, H. B. and Michelsohn, M. L.: Spin Geometry, Princeton University Press, Princeton, NJ, 1989.Google Scholar
  15. 15.
    Li, P. and Yau, S. T.: A conformal invariant and applications to theWillmore conjecture and the first eigenvalue for compact surfaces, Invent. Math. 69(1982), 269-291.Google Scholar
  16. 16.
    Milnor, J.: Remarks concerning spin manifolds, in Cairns, S. (ed.), Differential and Combinatorial Topology, Princeton University Press, Princeton, NJ, 1965, pp. 55-62.Google Scholar
  17. 17.
    Shiohama, K. and Takagi, A.: A characterization of a standard torus in E 3, J. Differential Geom. 4(1970), 477-485.Google Scholar
  18. 18.
    Vafa, C. and Witten, E.: Eigenvalue inequalities for fermions in gauge theories, Comm. Math. Phys. 95(1984), 257-276.Google Scholar
  19. 19.
    Wang, M.: Parallel spinors and parallel forms, Ann. Global Anal. Geom. 7(1989), 59-68.Google Scholar
  20. 20.
    Willmore, T. J.: Riemannian Geometry, Oxford University Press, Oxford, 1996.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Christian Bär
    • 1
  1. 1.Mathematisches InstitutUniversität FreiburgFreiburgGermany

Personalised recommendations