Transport in Porous Media

, Volume 36, Issue 2, pp 211–244

Coupled Solvent and Heat Transport of a Mixture of Swelling Porous Particles and Fluids: Single Time-Scale Problem

  • Lynn Schreyer Bennethum
  • John H. Cushman
Article

Abstract

A three-spatial scale, single time-scale model for both moisture and heat transport is developed for an unsaturated swelling porous media from first principles within a mixture theoretic framework. On the smallest (micro) scale, the system consists of macromolecules (clay particles, polymers, etc.) and a solvating liquid (vicinal fluid), each of which are viewed as individual phases or nonoverlapping continua occupying distinct regions of space and satisfying the classical field equations. These equations are homogenized forming overlaying continua on the intermediate (meso) scale via hybrid mixture theory (HMT). On the mesoscale the homogenized swelling particles consisting of the homogenized vicinal fluid and colloid are then mixed with two bulk phase fluids: the bulk solvent and its vapor. At this scale, there exists three nonoverlapping continua occupying distinct regions of space. On the largest (macro) scale the saturated homogenized particles, bulk liquid and vapor solvent, are again homogenized forming four overlaying continua: doubly homogenized vicinal fluid, doubly homogenized macromolecules, and singly homogenized bulk liquid and vapor phases. Two constitutive theories are developed, one at the mesoscale and the other at the macroscale. Both are developed via the Coleman and Noll method of exploiting the entropy inequality coupled with linearization about equilibrium. The macroscale constitutive theory does not rely upon the mesoscale theory as is common in other upscaling methods. The energy equation on either the mesoscale or macroscale generalizes de Vries classical theory of heat and moisture transport. The momentum balance allows for flow of fluid via volume fraction gradients, pressure gradients, external force fields, and temperature gradients.

swelling heat transfer polymer clay liquid/vapor transfer drying unsaturated mixture. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achanta, S. and Cushman, J. H.: Non-equilibrium swelling and capillary pressure relations for colloidal systems, J. Col. Int. Sci. 168 (1994), 266–268.Google Scholar
  2. 2.
    Achanta, S., Cushman, J. H. and Okos, M. R.: On multicomponent, multiphase thermomechanics with interfaces, Int. J. Engng. Sci. 32(11) (1994), 1717–1738.Google Scholar
  3. 3.
    Anderson, T. B. and Jackson, R.: Fluidized beds: equations of motion, Ind. Engng. Chem. Fundam. 6(4) (1967), 527–536Google Scholar
  4. 4.
    Baveye, P. and Sposito, G.: The operational significance of the continuum hypothesis in the theory of water movement through soils and aquifers, Water Resour. Res. 20(5) (1984), 521–530.Google Scholar
  5. 5.
    Bear, J.: Dynamics of Fluids in Porous Media, Dover, New York, 1972.Google Scholar
  6. 6.
    Bennethum, L. S.: Multiscale, hybrid mixture theory for swelling systems with interfaces, PhD Thesis, Purdue University, West Lafayette, Indiana, 47907, 1994.Google Scholar
  7. 7.
    Bennethum, L. S. and Cushman, J. H.: Multiscale, hybrid mixture theory for swelling systems – I: Balance laws, Int. J. Engng. Sci. 34(2) (1996a), 125–145.Google Scholar
  8. 8.
    Bennethum, L. S. and Cushman, J. H.: Multiscale, hybrid mixture theory for swelling systems – II: Constitutive theory, Int. J. Engng. Sci. 34(2) (1996b), 147–169.Google Scholar
  9. 9.
    Bennethum, L. S. and Giorgi, T.: Generalized Forchheimer Law for two-phase flow based on hybrid mixture theory, Transport in Porous Media. 26(3) (1997), 261–275.Google Scholar
  10. 10.
    Bennethum, L. S., Murad, M. A. and Cushman, J. H.: Clarifying mixture theory and the macroscale chemical potential for porous media, Int. J. Engng. Sci. 34(14) (1996), 1611–1621.Google Scholar
  11. 11.
    Bennethum, L. S., Murad, M. A. and Cushman, J. H.: Modified Darcy's law, Terzaghi's effective stress principle and Fick's law for swelling clay soils, Comput. Geotech. 20(3/4) (1997), 245–266.Google Scholar
  12. 12.
    Bouddour, A., Auriault, J.-L. and Mhamdi–Alaoui, M.: Heat and mass transfer in wet porous media in presence of evaporation condensation. Int. J. Heat Mass Transfer 41 (1993), 2263–2277.Google Scholar
  13. 13.
    Bowen, R. M.: Compressible porous media models by use of the theory of mixtures. Int. J. Engng. Sci. 20 (1982), 697–735.Google Scholar
  14. 14.
    Callen, H. B.: Thermodynamics and an Introduction to Thermostatistics, John Wiley and Sons, New York, 1985.Google Scholar
  15. 15.
    Carey, J. W.: Onsager's relation and nonisothermal diffusion of water vapor, J. Phys. Chem. 67 (1963), 126–129.Google Scholar
  16. 16.
    Carey, J.W.: An evaporation experiment and its irreversible thermodynamics, Int. J. Heat Mass Transfer 7 (1964), 531–538Google Scholar
  17. 17.
    Coleman, B. D. and Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rat. Mech. Anal. 13 (1963), 167–178.Google Scholar
  18. 18.
    Cushman, J. H.: Multiphase transport based on compact distributions, Acta Applicandae Mathematicae 3 (1985), 239–254.Google Scholar
  19. 19.
    Cushman, J. H.: An introduction to fluids in hierarchical porous media, In: J. H. Cushman (ed.), Dynamics of Fluid in Hierarchical Porous Media, Academic Press, New York, 1990a, pp. 1–6.Google Scholar
  20. 20.
    Cushman, J.H.: Molecular-scale Lubrication, Nature 347(6290) (1990b), 227–228.Google Scholar
  21. 21.
    Cushman, J. H.: The Physics of Fluids in Heirarchical Porous Media: Angstroms to Miles, Kluwer Academic, Dordrecht–Boston, 1997.Google Scholar
  22. 22.
    Cushman, J. H., Hu, X. and Ginn, T. R.: Nonequilibrium statistical mechanics of preasymptotic dispersion, J. Stat. Phys. 75 (1994), 859–878.Google Scholar
  23. 23.
    de Vries, D. A.: Simultaneous transfer of heat and moisture in porous media, Transac. Am. Geophys. Union 39(5) (1958), 909–916.Google Scholar
  24. 24.
    Deryaguin, B. V. and Melnikova, M. K.: Experimental study of the migration of water through the soil under the influence of salt concentration, temperature, and moisture gradients, In: Int. Congr. Soil Sci., Trans. 6th (Paris), 1956, pp. 305–314.Google Scholar
  25. 25.
    Eringen, A. C.: Mechanics of Continua, John Wiley and Sons, New York, 1967.Google Scholar
  26. 26.
    Gray, W. G. and Hassanizadeh, S.M.: Averaging theorems and averaged equations for transport of interface properties in multiphase systems, Int. J. Multiphase Flow 15 (1989), 81–95.Google Scholar
  27. 27.
    Gray, W. G. and Hassanizadeh, S. M.: Paradoxes and realities in unsaturated flow theory, Water Resour. Res. 27 (1991a), 1847–1854.Google Scholar
  28. 28.
    Gray, W. G. and Hassanizadeh, S. M.: Unsaturated flow theory including interfacial phenomena, Water Resour. Res. 27 (1991b), 1855–1863.Google Scholar
  29. 29.
    Gray, W. G. and Hassanizadeh, S. M.: Macroscale continuum mechanics for multiphase porous–media flow including phases, interfaces, common lines, and common points, Adv.Water Resour. 21(4) (1998), 261–281.Google Scholar
  30. 30.
    Grim, R. E.: Clay Mineralogy, McGraw-Hill, New York, 1968.Google Scholar
  31. 31.
    Groetsch, C.W.: Elements of Applicable Functional Analysis, Marcel Dekker, New York, 1980.Google Scholar
  32. 32.
    Hadas, A.: Evaluation of theoretically predicted thermal conductivities of soils under field and laboratory conditions, Soil Sci. Soc. Am. J. 41 (1980), 460–466.Google Scholar
  33. 33.
    Hassanizadeh, S. M.: Derivation of basic equations of mass transport in porous media, Part 1. Macroscopic balance laws, Adv. Water Resour. 9 (1986a), 196–206.Google Scholar
  34. 34.
    Hassanizadeh, S. M.: Derivation of basic equations of mass transport in porous media, Part 2. Generalized Darcy's and Fick's laws, Adv. Water Resour. 9 (1986b), 207–222.CrossRefGoogle Scholar
  35. 35.
    Hassanizadeh, S. M. and Gray, W. G.: General conservation equations for multiphase systems: 1. Averaging procedure, Adv. Water Resour. 2 (1979a), 131–144.Google Scholar
  36. 36.
    Hassanizadeh, S. M. and Gray, W. G.: General conservation equations for multiphase systems: 2. Mass, momenta, energy, and entropy equations, Adv. Water Resour. 2 (1979b), 191–208.Google Scholar
  37. 37.
    Hassanizadeh, S. M. and Gray, W. G.: General conservation equations for multiphase systems: 3. Constitutive theory for porous media, Adv. Water Resour. 3 (1980), 25–40.Google Scholar
  38. 38.
    Hassanizadeh, S. M. and Gray, W. G.: High velocity flow in porous media, Transport in Porous Media. 2 (1987), 521–531.Google Scholar
  39. 39.
    Hassanizadeh, S. M. and Gray, W. G.: Thermodynamic basis of capillary pressure in porous media, Water Resour. Res. 29(10) (1993a), 3389–3405.CrossRefGoogle Scholar
  40. 40.
    Hassanizadeh, S. M. and Gray, W. G.: Toward an improved description of the physics of twophase flow, Adv. Water Resour. 16 (1993b), 53–67.CrossRefGoogle Scholar
  41. 41.
    Israelachvili, J.: Intermolecular and Surface Forces, Academic Press, New York, 1992.Google Scholar
  42. 42.
    Low, P. F.: Nature and properties of water in montmorillonite-water systems, J. Soil Sci. Soc. Am. 43 (1979), 651–658.Google Scholar
  43. 43.
    Low, P. F.: The swelling of clay, II. Montmorillonites-water systems, J. Soil Sci. Soc. Am. 44 (1980), 667–676.Google Scholar
  44. 44.
    Moeckel, G. P.: Thermodynamics of an interface, Arch. Rat. Mech. Anal. 57 (1975), 255–280.Google Scholar
  45. 45.
    Murad, M. A., Bennethum, L. S. and Cushman, J. H.: A multi-scale theory of swelling porous media: I. Application to one-dimensional consolidation, Transport in Porous Media 19 (1995), 93–122.Google Scholar
  46. 46.
    Murad, M. A. and Cushman, J. H.: Multiscale flow and deformation in hydrophilic swelling porous media, Int. J. Engng. Sci. 34(3) (1996), 313–336.Google Scholar
  47. 47.
    Rollins, R. L., Spangler, M. G. and Kirkham, D.: Movement of Soil Moisture Under a Thermal Gradient, Highway Research Board Proc. 33 (1954), 492–508.Google Scholar
  48. 48.
    Schoen, M., Diestler, D. J. and Cushman, J. H.: Fluids in micropores. I. Structure of a simple classical fluid in a slit-pore, J. Chem. Phys. 87(9) (1987), 5464–5476.Google Scholar
  49. 49.
    Showalter, R.: Diffusion models with microstructure, Transport in Porous Media 6 (1991), 567–580.Google Scholar
  50. 50.
    Taylor, S. A. and Carey, J. W.: Analysis of simultaneous flow of water and heat or electricity with the thermodynamics of irreversible processes, In: 7th Int. Congr. of Soil Sci. Trans., Vol. 1. 1960, pp. 80–90.Google Scholar
  51. 51.
    Terzaghi, K.: Theoretical Soil Mechanics, John Wiley and Sons, New York, 1943.Google Scholar
  52. 52.
    Truesdell, C. and Toupin, R. A. The classical field theories, In: S. Flügge ed., Handbuch der Physik, Springer-Verlag, New York, 1960.Google Scholar
  53. 53.
    Whitaker, S.: Simultaneous heat, mass, and momentum transfer in porous media: A theory of drying, Adv. Heat Transfer (1977), pp. 119–203.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Lynn Schreyer Bennethum
    • 1
  • John H. Cushman
    • 2
  1. 1.Center for Computational MathematicsUniversity of Colorado at DenverDenverU.S.A
  2. 2.Center for Applied MathPurdue UniversityWest LafayetteU.S.A

Personalised recommendations