Artificial Intelligence Review

, Volume 13, Issue 2, pp 129–170 | Cite as

Genetic Algorithms for the Travelling Salesman Problem: A Review of Representations and Operators

  • P. Larrañaga
  • C.M.H. Kuijpers
  • R.H. Murga
  • I. Inza
  • S. Dizdarevic

Abstract

This paper is the result of a literature study carried out by the authors. It is a review of the different attempts made to solve the Travelling Salesman Problem with Genetic Algorithms. We present crossover and mutation operators, developed to tackle the Travelling Salesman Problem with Genetic Algorithms with different representations such as: binary representation, path representation, adjacency representation, ordinal representation and matrix representation. Likewise, we show the experimental results obtained with different standard examples using combination of crossover and mutation operators in relation with path representation.

Travelling Salesman Problem Genetic Algorithms binary representation path representation adjacency representation ordinal representation matrix representation hybridation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackley, D. H. (1987). A Connectionist Machine for Genetic Hillclimbing. Kluwer Academic Publishers.Google Scholar
  2. Ambati, B. K., Ambati, J. & Mokhtar, M.M. (1991). Heuristic Combinatorial Optimization by Simulated Darwinian Evolution: A Polynomial Time Algorithm for the Traveling Salesman Problem. Biological Cybernetics 65: 31-35.Google Scholar
  3. Banzhaf, W. (1990). The “Molecular” Traveling Salesman. Biological Cybernetics 64: 7-14.Google Scholar
  4. Beyer, H. G. (1992). Some Aspects of the 'Evolution Strategy' for Solving TSP-Like Optimization Problems Appearing at the Design Studies of the 0.5 TeVe + e -Linear Collider. In Männer, R. & Manderick, B. (eds.) Parallel Problem Solving from Nature 2, 361-370. Amsterdam: North-Holland.Google Scholar
  5. Brady, R.M. (1985). Optimization Strategies Gleaned from Biological Evolution. Nature 317: 804-806.Google Scholar
  6. Bremermann, H. J., Rogson, M. & Salaff, S. (1965). Search by Evolution. In Maxfield, M., Callahan A. & Fogel, L. J. (eds.) Biophysics and Cyberntic Systems, 157-167. Washington: Spartan Books.Google Scholar
  7. Davis, L. (1985). Applying Adaptive Algorithms to Epistatic Domains. Proceedings of the International Joint Conference on Artificial Intelligence, 162-164.Google Scholar
  8. Davis, L. (ed.) (1991). Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold.Google Scholar
  9. Fogel, L. J. (1962). Atonomous Automata. Ind. Res. 4: 14-19.Google Scholar
  10. Fogel, D. B. (1988). An Evolutionary Approach to the Traveling Salesman Problem. Biological Cybernetics 60: 139-144.Google Scholar
  11. Fogel, D. B. (1990). A Parallel Processing Approach to a Multiple Traveling Salesman Problem Using Evolutionary Programming. In Canter, L. (ed.) Proceedings on the Fourth Annual Parallel Processing Symposium, 318-326. Fullterton, CA.Google Scholar
  12. Fogel, D. B. (1993). Applying Evolutionary Programming to Selected Traveling Salesman Problems. Cybernetics and Systems 24: 27-36.Google Scholar
  13. Fox, M. S. & McMahon, M. B. (1987). Genetic Operators for Sequencing Problems. In Rawlings, G. (ed.) Foundations of Genetic Algorithms: First Workshop on the Foundations of Genetic Algorithms and Classifier Systems, 284-300. Los Altos, CA: Morgan Kaufmann Publishers.Google Scholar
  14. Gunnels, J., Cull, P. & Holloway, J. L. (1994). Genetic Algorithms and Simulated Annealing for Gene Mapping. In Grefenstette, J. J. (ed.) Proceedings of the First IEEE Conference on Evolutionary Computation, 385-390. Florida: IEEE.Google Scholar
  15. Goldberg, D. E. & Lingle, Jr., R. (1985). Alleles, Loci and the TSP. In Grefenstette, J. J. (ed.) Proceedings of the First International Conference on Genetic Algorithms and Their Applications, 154-159. Hillsdale, New Jersey: Lawrence Erlbaum.Google Scholar
  16. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison-Wesley.Google Scholar
  17. Gorges-Schleuter, M. (1989). ASPARAGOS An Asynchronous Parallel Genetic Optimization Strategy. In Schaffer, J. (ed.) Proceedings on the Third International Conference on Genetic Algorithms, 422-427. Los Altos, CA: Morgan Kaufmann Publishers.Google Scholar
  18. Grefenstette, J., Gopal, R., Rosmaita, B. & Van Gucht, D. (1985). Genetic Algorithms for the TSP. In Grefenstette, J. J. (ed.) Proceedings of the First International Conference on Genetic Algorithms and Their Applications, 160-165. Hillsdale, New Jersey: Lawrence Erlbaum.Google Scholar
  19. Grefenstette, J. J. (ed.) (1987a). Genetic Algorithms and Their Applications: Proceedings of the Second International Conference. Hillsdale, New Jersey: Lawrence Erlbaum.Google Scholar
  20. Grefenstette, J. J. (1987b). Incorporating Problem Specific Knowledge into Genetic Algorithms. In Davis, L. (ed.) Genetic Algorithms and Simulated Annealing, 42-60. Los Altos, CA: Morgan Kaufmann.Google Scholar
  21. Holland, J. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press.Google Scholar
  22. Homaifar, A. & Guan, S. (1991). A New Approach on the Traveling Salesman Problem by Genetic Algorithm. Technical Report, North Carolina A&T State University.Google Scholar
  23. Homaifar, A., Guan, S. & Liepins, G. E. (1993). A New Approach on the Traveling Salesman Problem by Genetic Algorithms. In Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, 460-466.Google Scholar
  24. Jog, P., Suh, J. Y. & Van Gucht, D. (1989). The Effects of Population Size, Heuristic Crossover and Local Improvement on a Genetic Algorithm for the Traveling Salesman Problem. In Schaffer, J. (ed.) Proceedings on the Third International Conference on Genetic Algorithms, 110-115. Los Altos, CA: Morgan Kaufmann Publishers.Google Scholar
  25. Johnson, D. S. (1990). Local Optimization and the Traveling Salesman Problem. Proc. 17th Colloq. Automata, Languages and Programming. Springer-Verlag.Google Scholar
  26. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science 220: 671-680.Google Scholar
  27. Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press.Google Scholar
  28. Larrañaga, P., Kuijpers, C. M. H., Poza, M. & Murga, R. H. (1996a) Decomposing Bayesian Networks: Triangulation of the Moral Graph with Genetic Algorithms. Statistics and Computing (to be published).Google Scholar
  29. Larrañaga, P., Kuijpers, C. M. H., Murga, R. H. & Yurramendi, Y. (1996b). Searching for the Best Ordering in the Structure Learning of Bayesian Networks. IEEE Transactions on Systems, Man and Cybernetics 26(4): 487-493.Google Scholar
  30. Larrañaga, P., Inza, I., Kuijpers, C. M. H., Graña, M. & Lozano, J. A. (1996c). Algoritmos Genéticos en el Problema del Viajante de Comercio. Informatica y Automatica (submitted).Google Scholar
  31. Lauritzen, S. L. & Spiegelhalter, D. J. (1988). Local Computations with Probabilities on Graphic Structures and Their Application on Expert Systems. Journal of the Royal Statistical Society, Series B 50(2): 157-224.Google Scholar
  32. Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G. & Shmoys, D. B. (eds.) (1985). The Travelling Salesman Problem: A Guided Tour of Combinatorial Optimization. Chichester: Wiley.Google Scholar
  33. Lidd, M. L. (1991). The Travelling Salesman Problem Domain Application of a Fundamentally New Approach to Utilizing Genetic Algorithms. Technical Report, MITRE Corporation.Google Scholar
  34. Liepins, G. E., Hilliard, M. R., Palmer, M. & Morrow, M. (1987). Greedy Genetics. In Grefenstette, J. J. (ed.) Genetic Algorithms and Their Applications: Proceedings of the Second International Conference, 90-99. Hillsdale, New Jersey: Lawrence Erlbaum.Google Scholar
  35. Lin, S. (1965). Computer Solutions on the Travelling Salesman Problem. Bell Systems Techn. J. 44: 2245-2269.Google Scholar
  36. Lin, S. & Kernighan, B. W. (1973). An Effective Heuristic Algorithm for the Traveling Salesman Problem. Operations Research 21: 498-516.Google Scholar
  37. Lin, F.-T., Kao, C.-Y. & Hsu, C.-C. (1993). Applying the Genetic Approach to Simulated Annealing in Solving NP-Hard Problems. IEEE Transactions on Systems, Man, and Cybernetics 23(6): 1752-1767.Google Scholar
  38. Lozano, J. A., Larrañaga, P. & Graña, M. (1996). Partitional Cluster Analysis with Genetic Algorithms: Searching for the Number of Clusters. Fifth Conference of International Federation of Classification Societies, 251-252. Kobe, Japan.Google Scholar
  39. Matthews, R. A. J. (1993). The Use of Genetic Algorithms in Cryptanalysis. Cryptologia XVII(2): 187-201.Google Scholar
  40. Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs. Berlin Heidelberg: Springer Verlag.Google Scholar
  41. Mühlenbein, H., Gorges-Schleuter, M. & Krämer, O. (1987). New Solutions to the Mapping Problem of Parallel Systems: The Evolution Approach. Parallel Computing 4: 269-279.Google Scholar
  42. Mühlenbein, H., Gorges-Schleuter, M. & Krämer, O. (1988). Evolution Algorithms in Combinatorial Optimization. Parallel Computing 7: 65-85.Google Scholar
  43. Mühlenbein, H. (1989). Parallel Genetic Algorithms, Population Genetics and Combinatorial Optimization. In Schaffer, J. (ed.) Proceedings on the Third International Conference on Genetic Algorithms, 416-421. Los Altos, CA: Morgan Kaufmann Publishers.Google Scholar
  44. Mühlenbein, H. & Kindermann, J. (1989). The Dynamics of Evolution and Learning — Towards Genetic Neural Networks. In Pfeiffer, J. (ed.) Connectionism in Perspectives.Google Scholar
  45. Mühlenbein, H. (1991). Evolution in Time and Space — The Parallel Genetic Algorithm. In Rawlins, G. (ed.) Foundations of Genetic Algorithms. Los Altos, CA: Morgan Kaufmann.Google Scholar
  46. Oliver, I. M., Smith, D. J. & Holland, J. R. C. (1987). A Study of Permutation Crossover Operators on the TSP. In Grefenstette, J. J. (ed.) Genetic Algorithms and Their Applications: Proceedings of the Second International Conference, 224-230. Hillsdale, New Jersey: Lawrence Erlbaum.Google Scholar
  47. Or, I. (1976). Travelling Salesman-Type Combinatorial Problems and Their Relation to the Logistics of Regional Blood Banking. PhD Thesis, Northwestern University.Google Scholar
  48. Prinetto, P., Rebaudengo, M. & Sonza Reorda, M. (1993). Hybrid Genetic Algorithms for the Traveling Salesman Problem. In Albrecht, R. F., Reeves, C. R. & Steele, N. C. (eds.) Artificial Neural Nets and Genetic Algorithms, 559-566. Wien: Springer-Verlag.Google Scholar
  49. Rechenberg, I. (1973). Optimierung Technischer Systeme Nach Prinzipien der Biologischen Information. Stuttgart: Frommann Verlag.Google Scholar
  50. Reinelt, G. (1991). TSPLIB — A Traveling Salesman Library. ORSA Journal on Computing 3(4): 376-384.Google Scholar
  51. Schaffer, J. (ed.) (1989). Proceedings on the Third International Conference on Genetic Algorithms. Los Altos, CA: Morgan Kaufmann Publishers.Google Scholar
  52. Schwefel, H.P. (1975). Evolutionsstrategie und Numerische Optimierung. Doctoral Thesis Diss. D 83, TU Berlin.Google Scholar
  53. Seniw, D. (1991). A Genetic Algorithm for the Traveling Salesman Problem. MSc Thesis, University of North Carolina at Charlotte.Google Scholar
  54. Spillman, R., Janssen, M., Nelsonn B. & Kepner, M. (1993). Use of a Genetic Algorithm in the Cryptanalysis Simple Substitution Ciphers. Cryptologia XVII(1): 31-44.Google Scholar
  55. SPSS-X, User's Guide (1988). 3rd Edition.Google Scholar
  56. Starkweather, T., McDaniel, S., Mathias, K., Whitley, C. & Whitley, D. (1991). A Comparison of Genetic Sequencing Operators. In Belew, R. & Booker, L. (eds.) Proceedings on the Fourth International Conference on Genetic Algorithms, 69-76. Los Altos, CA: Morgan Kaufmann Publishers.Google Scholar
  57. Suh, J. Y. & Van Gucht, D. (1987). Incorporating Heuristic Information into Genetic Search. In Grefenstette, J. J. (ed.) Genetic Algorithms and Their Applications: Proceedings of the Second International Conference, 100-107. Hillsdale, New Jersey: Lawrence Erlbaum.Google Scholar
  58. Syswerda, G. (1991). Schedule Optimization Using Genetic Algorithms. In Davis, L. (ed.) Handbook of Genetic Algorithms, 332-349. New York: Van Nostrand Reinhold.Google Scholar
  59. Ulder, N. L. J., Aarts, E. H. L., Bandelt, H.-J., Van Laarhoven, P. J. M. & Pesch, E. (1990). Genetic Local Search Algorithms for the Traveling Salesman Problem. In Parallel Problem Solving from Nature, 106-116. Berlin Heidelberg: Springer-Verlag.Google Scholar
  60. Whitley, D., Starkweather, T. & D'Ann Fuquay (1989). Scheduling Problems and Travelling Salesman: The Genetic Edge Recombination Operator. In Schaffer, J. (ed.) Proceedings on the Third International Conference on Genetic Algorithms, 133-140. Los Altos, CA: Morgan Kaufmann Publishers.Google Scholar
  61. Whitley, D., Starkweather, T. & Shaner, D. (1991). The Traveling Salesman and Sequence Scheduling: Quality Solutions Using Genetic Edge Recombination. In Davis, L. (ed.) Handbook of Genetic Algorithms, 350-372. New York: Van Nostrand Reinhold.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • P. Larrañaga
    • 1
  • C.M.H. Kuijpers
    • 1
  • R.H. Murga
    • 1
  • I. Inza
    • 1
  • S. Dizdarevic
    • 1
  1. 1.Dept. of Computer Science and Artificial IntelligenceUniversity of the Basque CountrySan Sebastián, The Basque CountrySpain

Personalised recommendations