Acta Mathematica Hungarica

, Volume 79, Issue 4, pp 269–294 | Cite as

On Perfect Semigroups

  • T. M. Bisgaard
Article

Abstract

It is shown that in order to characterize perfect semigroups in general, it suffices to characterize perfect semigroups among semigroups S such that S is a subsemigroup of a rational vector space, carries the identical involution, and has an archimedean component H such that S = H ∪ {0}.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Berg and P. H. Maserick, Exponentially bounded positive definite functions, Illinois J. Math., 28 (1984), 162–179.Google Scholar
  2. [2]
    C. Berg, J. P. R. Christensen and C. U. Jensen, A remark on the multidimensional moment problem, Math. Ann., 243 (1979), 163–169.Google Scholar
  3. [3]
    C. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups, Springer (New York-Berlin-Heidelberg-Tokyo, 1984).Google Scholar
  4. [4]
    T. M. Bisgaard, Extension of characters on *-semigroups, Math. Ann., 282 (1988), 251–258.Google Scholar
  5. [5]
    T. M. Bisgaard, Characterization of perfect involution groups, Math. Scand., 65 (1989), 245–258.Google Scholar
  6. [6]
    T. M. Bisgaard, Separation by characters or positive definite functions, Semigroup Forum, 53 (1996), 317–320.Google Scholar
  7. [7]
    T. M. Bisgaard, Method of moments on semigroups, J. Theor. Prob., 9 (1996), 631–645.Google Scholar
  8. [8]
    T. M. Bisgaard and P. Ressel, Unique disintegration of arbitrary positive definite functions on *-divisible semigroups, Math. Z., 200 (1989), 511–525.Google Scholar
  9. [9]
    W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, Third Edition, John Wiley & Sons (New York, 1968).Google Scholar
  10. [10]
    I. Kaplansky, Infinite Abelian Groups, University of Michigan Press (Ann Arbor, 1954).Google Scholar
  11. [11]
    Y. Nakamura and N. Sakakibara, Perfectness of certain subsemigroups of a perfect semigroup, Math. Ann., 287 (1990), 213–220.Google Scholar
  12. [12]
    N. Sakakibara, Moment problems on subsemigroups of N0k and Zk, Semigroup Forum, 45 (1992), 241–248.Google Scholar
  13. [13]
    K. Schmüdgen, An example of a positive polynomial which is not a sum of squares of polynomials. A positive, but not strongly positive functional, Math. Nachr., 88 (1979), 385–390.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • T. M. Bisgaard
    • 1
  1. 1.Frederiksberg CDenmark

Personalised recommendations