Advertisement

Transport in Porous Media

, Volume 32, Issue 2, pp 163–186 | Cite as

A Two-Dimensional Network Simulator for Two-Phase Flow in Porous Media

  • Eyvind Aker
  • Knut JØrgen MÅlØy
  • Alex Hansen
  • G.George Batrouni
Article

Abstract

We investigate a two-dimensional network simulator that model the dynamics of drainage dominated flow where film flow can be neglected. We present a new method for simulating the temporal evolution of the pressure due to capillary and viscous forces in the displacement process. To model the dynamics, we let the local capillary pressure change as if the menisci move in and out of hour-glass shaped tubes. Furthermore, a method has been developed to allow simultaneous flow of two liquids into one tube. The model is suitable to simulate different time dependencies in two-phase drainage displacements. In this paper, we simulate the temporal evolution of the fluid pressures and analyze the time dependence of the front between the two liquids. The front width was found to be consistent with a scaling relation w ∝ tβ h(t/ts). The dynamical exponent, β, describing the front width evolution as function of time, was estimated to β = 1.0. The results are compared to experimental data of Frette and co-workers.

network modeling immiscible drainage displacement two-phase flow capillary and viscous forces pressure simulations scaling exponents front width time dependences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batrouni, G. G. and Hansen, A.: 1988, Fourier acceleration of iterative processes in disordered systems, J. Stat. Phys. 52, 747–773.Google Scholar
  2. Blunt, M. and King, P.: 1990, Macroscopic parameters from simulations of pore scale flow, Phys. Rev. A 42, 4780–4787.Google Scholar
  3. Cieplak, M. and Robbins, M. O.: 1988, Dynamical transition in quasi-static fluid invasion in porous media, Phys. Rev. Lett. 60, 2042–2045.Google Scholar
  4. Chen, J.-D. and Wilkinson, D.: 1985, Pore-scale viscous fingering in porous media, Phys. Rev. Lett. 55, 1892–1895.Google Scholar
  5. Constantinides, G. N. and Payatakes, A. C.: 1996, Network simulation of steady-state two-phase flow in consolidated porous media, AIChEJ 42, 369–382.Google Scholar
  6. Dias, M. M. and Payatakes, A. C.: 1986, Network models for two-phase flow in porous media. Part 1. Immiscible micro-displacement of non-wetting fluids, J. Fluid Mech. 164, 305–336.Google Scholar
  7. Dullien, F. A. L.: 1992, Porous Media: Fluid Transport and Pore Structure, Academic Press, San Diego, pp. 333–336.Google Scholar
  8. Dussen, V. E. B.: 1979, On the spreading of liquids on solid surfaces: static and dynamic contact lines, Ann. Rev. Fluid Mech. 11, 371–400.Google Scholar
  9. Frette, O. I., Måløy, K. J., Schmittbuhl, J. and Hansen, A.: 1997, Immiscible displacement of viscosity matched fluids in two-dimensional porous media, Phys. Rev. E 55, 2969–2975.Google Scholar
  10. Haines, W. B.: 1930, Studies in the physical properties of soil, J. Agr. Sci. 20, 97–116.Google Scholar
  11. Grossmann, T. and Aharony, A.: 1986a, Structure and perimeters of percolation clusters, J. Phys. A 19, L745–L751.Google Scholar
  12. Grossmann, T. and Aharony, A.: 1986b, Accessible external perimeters of percolation clusters, J. Phys. A 20, L1193–L1201.Google Scholar
  13. King, P. R.: 1987, The fractal nature of viscous fingering in porous media, J. Phys. A 20, L529–L534.Google Scholar
  14. Koplik, J. and Lasseter, T. J.: 1985, Two-phase flow in random network models of porous media, SPE J. 2, 89–100.Google Scholar
  15. Lenormand, R., Touboul, E. and Zarcone, C.: 1988, Numerical models and experiments on immiscible displacements in porous media, J. Fluid Mech. 189, 165–187.Google Scholar
  16. Lenormand, R. and Zarcone, C.: 1983, Mechanism of the displacement of one fluid by another in a network of capillary ducts, J. Fluid Mech. 135, 337–353.Google Scholar
  17. Lenormand, R. and Zarcone, C.: 1985, Invasion percolation in an etched network: measurement of a fractal dimension, Phys. Rev. Lett. 54, 2226–2229.Google Scholar
  18. Måløy, K. J., Feder, J. and Jøssang, T.: 1985, Viscous fingering fractals in porous media, Phys. Rev. Lett. 55, 2688–2691.Google Scholar
  19. Måløy, K. J., Furuberg, L., Feder, J. and Jøssang, T.: 1992, Dynamics of slow drainage in porous media, Phys. Rev. Lett. 68, 2161–2164.Google Scholar
  20. Paterson, L.: 1984, Diffusion-limited aggregation and two-fluid displacements in porous media. Phys. Rev. Lett. 52, 1621–1624.Google Scholar
  21. Pereira, G. G., Pinczewski, W. V., Chan, D. Y. C., Paterson, L. and Øren, P. E.: 1996, Pore-scale network model for drainage-dominated three-phase flow in porous media, Transport in Porous Media 24, 167–201.Google Scholar
  22. Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P.: 1992, Numerical Recipes, Cambridge University Press, New York, NY, pp. 704–708.Google Scholar
  23. Stauffer, D. and Aharony, A.: 1992, Introduction to Percolation Theory, Taylor & Francis, London, Great Britain.Google Scholar
  24. van der Marck, S. C., Matsuura, T. and Glas, J.: 1997, Viscous and capillary pressures during drainage: Network simulations and experiments, Phys. Rev. E 56, 5675–5687.Google Scholar
  25. Xu, B., Yortsos, Y. C. and Salin, D.: 1998, Invasion percolation with viscous forces, Phys. Rev. E 57, 739–751.Google Scholar
  26. Washburn, E. W.: 1921, The dynamics of capillary flow, Phys. Rev. 17, 273–283.Google Scholar
  27. Wilkinson, D.: 1986, Percolation effects in immiscible displacement, Phys. Rev. A 34, 1380–1391.Google Scholar
  28. Wilkinson, D. and Willemsen, J. F.: 1983, Invasion percolation: A new form of percolation theory, J. Phys. A 16, 3365–3376.Google Scholar
  29. Witten, T. A. and Sander, L. M.: 1981, Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett. 47, 1400–1403.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Eyvind Aker
    • 1
    • 2
  • Knut JØrgen MÅlØy
    • 1
  • Alex Hansen
    • 2
    • 3
  • G.George Batrouni
    • 4
  1. 1.Department of PhysicsUniversity of OsloOsloNorway
  2. 2.Department of PhysicsNorwegian University of Science and TechnologyTrondheimNorway
  3. 3.IKU Petroleum ResearchTrondheimNorway
  4. 4.Institut Non-Lin de NiceUniversit de Nice - Sophia AntipolisValbonneFrance

Personalised recommendations