Artificial Intelligence Review

, Volume 12, Issue 4, pp 265–319 | Cite as

Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis

  • F. Herrera
  • M. Lozano
  • J.L. Verdegay

Abstract

Genetic algorithms play a significant role, as search techniques forhandling complex spaces, in many fields such as artificial intelligence, engineering, robotic, etc. Genetic algorithms are based on the underlying genetic process in biological organisms and on the naturalevolution principles of populations. These algorithms process apopulation of chromosomes, which represent search space solutions,with three operations: selection, crossover and mutation.

Under its initial formulation, the search space solutions are coded using the binary alphabet. However, the good properties related with these algorithms do not stem from the use of this alphabet; other coding types have been considered for the representation issue, such as real coding, which would seem particularly natural when tackling optimization problems of parameters with variables in continuous domains. In this paper we review the features of real-coded genetic algorithms. Different models of genetic operators and some mechanisms available for studying the behaviour of this type of genetic algorithms are revised and compared.

genetic algorithms real coding continuous search spaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonisse, J. (1989). A new interpretation of schema notation that overturns the binary encoding constraint. Proc. of the Third Int. Conf. on Genetic Algorithms, J. David Schaffer (Ed.) (Morgan Kaufmann Publishers, San Mateo), 86–91.Google Scholar
  2. Arabas, J., Mulawka, J.J. & Pokraśniewicz, J. (1995). A New Class of the Crossover Operators for the Numerical Optimization. Proc. of the Sixth Int. Conf. on Genetic Algorithms, L. Eshelman (Ed.) (Morgan Kaufmann Publishers, San Francisco), 42–47.Google Scholar
  3. Bäck, T., Hoffmeister, F. & Schwefel, HP. (1991a). A Survey of Evolution Strategies. Proc. of the Fourth Int. Conf. on Genetic Algorithms, R. Belew and L.B. Booker (Eds.) (Morgan Kaufmmann, San Mateo), 2–9.Google Scholar
  4. Bäck, T., Hoffmeister, F. & Schwefel, HP. (1991b). Extended Selection Mechanisms in Genetic Algorithms. Proc. of the Fourth Int. Conf. on Genetic Algorithms, R. Belew and L.B. Booker (Eds.) (Morgan Kaufmmann, San Mateo), 92–99.Google Scholar
  5. Bäck, T., Schwefel, H-P. (1993). An Overview of Evolutionary Algorithms for Parameter Optimization. Evolutionary Computation, 1(1), 1–23.Google Scholar
  6. Baker, J.E. (1985). Adaptive Selection Methods for Genetic Algorithms. Proc. of an Int. Conf. on Genetic Algorithms(L. Erlbaum Associates, Hillsdale, MA), 101–111.Google Scholar
  7. Baker. J. E. (1987). Reducing bias and inefficiency in the selection algorithm. Proc. Second Int. Conf. on Genetic Algorithms(L. Erlbaum Associates, Hillsdale, MA), 14–21.Google Scholar
  8. Beasley, D., Bull, D.R. & Martin, R. R. (1993). An Overview of Genetic Algorithms: Part 2, Research Topics. University Computing, 15(4), 170–181.Google Scholar
  9. Belew, R.K. and Booker, L.B., (Eds.) (1991). Proceeding of the Fourth International Conference on Genetic Algorithms. Morgan Kaufmann Publishers.Google Scholar
  10. Booker, L.B., Goldberg, D.E. & Holland, J.H. (1989). Classifier Systems and Genetic Algorithms. Artificial Intelligence 40(1/3), 235–282.Google Scholar
  11. Bramlette, M.F. (1991). Initialization, Mutation and Selection Methods in Genetic Algorithms for Function Optimization. Proc. of the Fourth Int. Conf. on Genetic Algorithms, R. Belew and L.B. Booker (Eds.) (Morgan Kaufmmann, San Mateo), 100–107.Google Scholar
  12. Bramlette, M.F. & Bouchard, E.E. (1991). Genetic Algorithms in Parametric Design of Aircraft. Handbook of Genetic Algorithms, L. Davis (Ed.) (Van Nostrand Reinhold, New York), 109–123.Google Scholar
  13. Caruana, R.A. & Schaffer, J.D. (1988). Representation and Hidden Bias: Gray versus Binary Coding for Genetic Algorithms. Proc. of the Fifth International Conference on Machine Learning, 153–162.Google Scholar
  14. Corcoran, A.L. & Sen S. (1994). Using Real-Valued Genetic Algorithms to Evolve Sets for Classification. IEEE Conference on Evolutionary Computation, 120–124.Google Scholar
  15. Cordon, O. & Herrera F. (1995). A General Study of Genetic Fuzzy Systems. Genetic Algorithms in Engineering and Computer Science, (Periaux, J., Winte, G., Eds.) John Wiley and Sons, 33–57.Google Scholar
  16. Davidor, Y. (1991). Genetic Algorithms and Robotics: A Heuristic Strategy for Optimization. World Scientific, London.Google Scholar
  17. Davis, L. (1989). Adapting Operator Probabilities in Genetic Algorithms. Proc. of the Third Int. Conf. on Genetic Algorithms, J. David Schaffer (Ed.) (Morgan Kaufmann Publishers, San Mateo), 61–69.Google Scholar
  18. Davis, L. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York.Google Scholar
  19. Deb, K. & Kumar, A. (1995a). RealCoded Genetic Algorithms with Simulated Binary Crossover: Studies on Multimodal and Multiobjective Problems. Complex Systems 9, 431–454.Google Scholar
  20. Deb, K. & Agrawal, R.B. (1995b). Simulated Binary Crossover for Continuous Search Space. Complex Systems 9, 115–148.Google Scholar
  21. Deb, K. & Goyal, M. (1997). Optimization Engineering Designs Using a Combined Genetic Search. Proc. of the Seventh Int. Conf. on Genetic Algorithms, T. Bäck (Ed.) (Morgan Kaufmann Publishers, San Francisco). 521–528.Google Scholar
  22. De Jong, K.A. (1975). An analysis of the behavior of a class of genetic adaptive systems. Doctoral dissertation, University of Michigan.Google Scholar
  23. Eshelman, L.J., Caruana, A. & Schaffer, J.D. (1989). Biases in the Crossover Landscape. Proc. of the Third Int. Conf. on Genetic Algorithms, J. David Schaffer (Ed.) (Morgan Kaufmann Publishers, San Mateo), 86–91.Google Scholar
  24. Eshelman L.J. & Schaffer J.D. (1993). Real-Coded Genetic Algorithms and Interval-Schemata. Foundation of Genetic Algorithms 2, L. Darrell Whitley (Ed.) (Morgan Kaufmann Publishers, San Mateo), 187–202.Google Scholar
  25. Eshelman, L.J., Mathias, K.E. & Schaffer, J.D. (1996). Convergence Controlled Variation. Foundations of Genetic Algorithms 4, R.K. Belew, M.D. Vose (Eds.) (Morgan Kaufmann Publishers, San Francisco), 203–224.Google Scholar
  26. Eshelman, L.J., Mathias, K.E. & Schaffer, J.D. (1997). Crossover Operator Biases: Exploiting the Population Distribution. Proc. of the Seventh Int. Conf. on Genetic Algorithms, T. Bäck (Ed.) (Morgan Kaufmann Publishers, San Francisco), 354–361.Google Scholar
  27. Fogel, D.B. (1994). An Introduction to Simulated Evolutionary Optimization. IEEE Trans. on Neural Networks 5(1), 3–14.Google Scholar
  28. Forrest, S. (Ed.) (1993). Proceeding of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann Publishers, San Mateo.Google Scholar
  29. Forrest, S., Javornik, B., Smith, R.E. & Perlson, A.S. (1993). Using Genetic Algorithms to Explore Pattern Recognition in the Immune System. Evolutionary Computation 1, 191–212.Google Scholar
  30. Fox, B.R. & McMahon, M.B. (1991). Genetic Operators for Sequencing Problems. Foundations of Genetic Algorithms 1, G.J.E. Rawlin (Ed.) (Morgan Kaufmann, San Mateo), 284–300.Google Scholar
  31. Goldberg, D.E. (1989a). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, New York.Google Scholar
  32. Goldberg D.E. (1989b). Genetic Algorithms and Walsh Functions: Part II, Deception and Its Analysis. Complex Systems 3, 153–171.Google Scholar
  33. Goldberg D.E., Korb, B. & Deb, K. (1989). Messy Genetic Algorithms: Motivation, Analysis, and First Results. Complex Systems 3, 493–530.Google Scholar
  34. Goldberg D.E. (1991a). Real-Coded Genetic Algorithms, Virtual Alphabets, and Blocking. Complex Systems 5, 139–167.Google Scholar
  35. Goldberg, D.E. & Deb, K. (1991b). A Comparative Analysis of Selection Schemes Used in Genetic Algorithms. Foundations of Genetic Algorithms 1, G.J.E. Rawlin (Ed.) (Morgan Kaufmann, San Mateo), 69–93.Google Scholar
  36. Goldberg, D.E. (1991c). Genetic and Evolutionary Algorithms Come of Age. Communication of the Association for Computing Machinery 37(3), 113–119.Google Scholar
  37. Grefenstette J.J. (1990). A User’s Guide to GENESIS Version 5.0.Google Scholar
  38. Grefenstette J.J. (Ed.) (1995). Genetic Algorithms for Machine Learning. Kluwer Academic Publishers, Boston (Reprinted from Machine Learning 13(2/3), 1993).Google Scholar
  39. Hart, W.E. (1996). A Stationary Point Convergence Theory for Evolutionary Algorithms. Foundations of Genetic Algorithms 4, R.K. Belew, M.D. Vose (Eds.) (Morgan Kaufmann Publishers, San Francisco), 325–342.Google Scholar
  40. Hart, W.E. (1997). A Generalized Stationary Point Convergence Theory for Evolutionary Algorithms. Proc. of the Seventh Int. Conf. on Genetic Algorithms, T. Bäck (Ed.) (Morgan Kaufmann Publishers, San Francisco), 127–134.Google Scholar
  41. Herrera, F, Herrera-Viedma, E., Lozano, M. & Verdegay, J.L. (1994). Fuzzy Tools to Improve Genetic Algorithms. Proc. Second European Congress on Intelligent Techniques and Soft Computing, 1532–1539.Google Scholar
  42. Herrera, F, Lozano, M. & Verdegay, J.L. (1995). Tuning Fuzzy Logic Controllers by Genetic Algorithms. International Journal of Approximate Reasoning 12 299–315.Google Scholar
  43. Herrera, F., Lozano, M. & Verdegay, J.L. (1996a). Dynamic and Heuristic Fuzzy Connectives Based Crossover Operators for Controlling the Diversity and Convergence of Real Coded Genetic Algorithms. Int. Journal of Intelligent Systems 11, 1013–1041.Google Scholar
  44. Herrera, F. & Lozano, M. (1996b). Adaptation of Genetic Algorithm Parameters Based on Fuzzy Logic Controllers. Genetic Algorithms and Soft Computing, F. Herrera, J.L. Verdegay (Eds.), Physica-Verlag, 95–125.Google Scholar
  45. Herrera, F. & Lozano, M. (1996c). Heuristic Crossover for Real-Coded Genetic Algorithms Based on Fuzzy Connectives. 4th International Conference on Parallel Problem Solving from Nature, HM. Voigt, W. Ebeling, I. Rechenberg, HP. Schwefel (Eds.), LNCS 1141, Springer, 336–345.Google Scholar
  46. Herrera, F., Lozano, M. & Verdegay, J.L. (1997a). Fuzzy Connectives Based Crossover Operators to Model Genetic Algorithms Population Diversity. Fuzzy Sets and Systems 92(1), 21–30.Google Scholar
  47. Herrera, F. & Lozano, M. (1997b). Heterogeneous Distributed Genetic Algorithms Based on the Crossover Operator. Second IEE/IEEE Int. Conf. on Genetic Algorithms in Engineering Systems: Innovations and Applications, 203–208.Google Scholar
  48. Herrera, F. & Lozano, M. (1997c). Two-Loop Real-Coded Genetic Algorithms with Adaptive Control of Mutation Step Sizes. Technical Report#DECSAI970128, Dept. of Computer Science and Artificial Intelligence, University of Granada, Spain.Google Scholar
  49. Hinterding, R. (1995). Gaussian Mutation and Self-Adaption for Numeric Genetic Algorithms. Proc. of the International Conference on Evolutionary Computation, IEEE Press, 384–389.Google Scholar
  50. Hinterding, R., Michalewicz, Z. & Peachey, T.C. (1996). Self-Adaptive Genetic Algorithm for Numeric Functions. 4th International Conference on Parallel Problem Solving from Nature, HM. Voigt, W. Ebeling, I. Rechenberg, HP. Schwefel (Eds.), LNCS 1141, Springer, 421–429.Google Scholar
  51. Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. The University of Michigan Press.Google Scholar
  52. Holland, J.H., Holyoak, K.J., Nisbett, R.E. & Thagard, P.R. (1986). Induction. Processes of Inference, Learning, and Discovery. The MIT Press, Cambridge.Google Scholar
  53. Iba, H., Akiba, S., Higuchi, T. & Sato, T. (1992). BUGS: A Bug-Based Search Strategy using Genetic Algorithms. Parallel Problem Solving from Nature 2, R. Männer and B. Manderick (Eds.) (Elsevier Science Publichers, Amsterdam), 165–174.Google Scholar
  54. Ichikawa, Y. & Ishii, Y. (1993). Retainig Diversity of Genetic Algorithms for Multivariable Optimization and Neural Network Learning. Proc. IEEE Int. Conf. on Neural Networks, San Francisco, California, 1110–1114.Google Scholar
  55. Janikow, C.Z. & Michalewicz, Z. (1991). An Experimental Comparison of Binary and Floating Point Representation in Genetic Algorithms. Proc. of the Fourth Int. Conf. on Genetic Algorithms, R. Belew and L.B. Booker (Eds.) (Morgan Kaufmmann, San Mateo), 31–36.Google Scholar
  56. Karlin, S. (1968). Equilibrium Behavior of Population Genetic Models with Nonrandom mating. J. App. Prob. 5, 231–313.Google Scholar
  57. Kelly, J. & Davis, L. (1991). Hybridizing the GA and the K Nearest Neighbors Classification Algorithm. Proc. of the Fourth Int. Conf. on Genetic Algorithms, R. Belew and L.B. Booker (Ed.) (Morgan Kaufmmann, San Mateo), 377–383.Google Scholar
  58. Koza, J.R. (1992). Genetic Programming. The MIT press, Cambridge.Google Scholar
  59. Liepins, G.E. & Vose, M.D. (1990). Representational Issues in Genetic Optimization. J. Expt. Theor. Artif. Intell. 2, 101–115.Google Scholar
  60. Liepins, G.E. & Vose, M.D. (1992). Characterizing Crossover in Genetic Algorithms. Annals of Mathematics and Artificial Intelligence 5(1), 27–34.Google Scholar
  61. Lucasius, C. B. & Kateman G. (1989). Applications of genetic algorithms in chemometrics. Proc. of the Third International Conference on Genetic Algorithms, J. David Schaffer (Ed.) (Morgan Kaufmann Publishers, San Mateo), 170–176.Google Scholar
  62. Michalewicz, Z. (1991). A Genetic Algorithms for the Linear Transportation Problem. IEEE Trans. on Systems, Man, and Cybernetics 21(2), 445–452.Google Scholar
  63. Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, New York.Google Scholar
  64. Michielssen, E., Ranjithan, S. & Mittra, R. (1992). Optimal Multilayer Filter Design Using Real Coded Genetic Algorithms. IEE Proceedings-J, {vn139(6)}, 413–419.Google Scholar
  65. Mizumoto M. (1989a). Pictorial Representations of fuzzy connectives, Part I: Cases of t-norms, t-conorms and averaging operators. Fuzzy Sets and Systems 31, 217–242.Google Scholar
  66. Mizumoto M. (1989b). Pictorial Representations of fuzzy connectives, Part II: Cases of Compensatory Operators and Seft-dual Operators. Fuzzy Sets and Systems 32, 45–79.Google Scholar
  67. Mühlenbein H. & Schlierkamp-Voosen D. (1993). Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization. Evolutionary Computation 1, 25–49.Google Scholar
  68. Mühlenbein, H. & Schlierkamp-Voosen, D. (1996a). Adaptation of Population Sizes by Competing Subpopulations. Proc. International Conference on Evolutionary Computation (ICEC’96), 330–335.Google Scholar
  69. Mühlenbein, H., Bendisch, J. & Voigt, HM. (1996b). From Recombination of Genes to the Estimation of Distributions II. Continuous Parameters. 4th International Conference on Parallel Problem Solving from Nature, HM. Voigt, W. Ebeling, I. Rechenberg, HP. Schwefel (Eds.), LNCS 1141, Springer, 188–197.Google Scholar
  70. Nomura, T. & Miyoshi, T. (1995). Numerical Coding and Unfair Average Crossover in GA for Fuzzy Clustering and their Applications for Automatic Fuzzy Rule Extraction. Proc. IEEE/Nagoya University WWW’95, 13–21.Google Scholar
  71. Nomura, T. & Miyoshi, T. (1996). Numerical Coding and Unfair Average Crossover in GA for Fuzzy Rule Extraction in Dynamic Environments. Fuzzy Logic, Neural Networks, and Evolutionary Computation, T. Furuhashi and Y. Uchikawa (Eds.), Springer, 55–72.Google Scholar
  72. Nomura, T. (1997a). An Analysis on Crossovers for Real Number Chromosomes in an Infinite Population Size. Proc. International Joint Conference on Artificial Intelligence (IJCAI’97), 936–941.Google Scholar
  73. Nomura, T. (1997b). An Analysis on Linear Crossovers for Real Number Chromosomes in an Infinite Population Size. Proc. International Conference on Evolutionary Computation (ICEC’97), 111–114.Google Scholar
  74. Ono, I. & Kobayashi S. (1997). A Real-Coded Genetic Algorithm for Function Optimization Using Unimodal Normal Distribution Crossover. Proc. of the Seventh Int. Conf. on Genetic Algorithms, T. Bäck (Ed.) (Morgan Kaufmann Publishers, San Francisco), 246–253.Google Scholar
  75. Qi, X. & Palmieri, F. (1994a). Theoretical Analysis of Evolutionary Algorithms With an Infinite Population Size in Continuous Space Part I: Basic Properties of Selection and Mutation. IEEE Trans. on Neural Networks 5(1), 102–119.Google Scholar
  76. Qi, X. & Palmieri, F. (1994b). Theoretical Analysis of Evolutionary Algorithms With an Infinite Population Size in Continuous Space Part II: Analysis of the Diversification Role of Crossover. IEEE Trans. on Neural Networks 5(1), 120–128.Google Scholar
  77. Radcliffe N.J. (1991a). Equivalence Class Analysis of Genetic Algorithms. Complex Systems {vn5(2)}, 183–205.Google Scholar
  78. Radcliffe N.J. (1991b). Forma Analysis and Random Respecful Recombination. Proc. of the Fourth Int. Conf. on Genetic Algorithms, R. Belew and L.B. Booker (Eds.) (Morgan Kaufmmann, San Mateo), 222–229.Google Scholar
  79. Radcliffe N.J. (1992). Non-Linear Genetic Representations. Parallel Problem Solving from Nature 2, R. Männer and B. Manderick (Ed.) (Elsevier Science Publichers, Amsterdam), 259–268.Google Scholar
  80. Reeves, C.R. (1993). Using Genetic Algorithms with Small Populations. Proc. of the Fifth Int. Conf. on Genetic Algorithms, S. Forrest (Ed.) (Morgan Kaufmmann, San Mateo), 92–99.Google Scholar
  81. Renders, J. M. & Bersini, H. (1994). Hybridizing Genetic Algorithms with HillClimbing Methods for GlobalOptimization: Two PossibleWays. Proc. of The First IEEE Conference on Evolutionary Computation, 312–317.Google Scholar
  82. Salomon, R. (1996a). The Influence of Different Coding Schemes on the Computational Complexity of Genetic Algorithms in Function Optimization. 4th International Conference on Parallel Problem Solving from Nature, HM. Voigt, W. Ebeling, I. Rechenberg, HP. Schwefel (Eds.), LNCS 1141, Springer, 227–235.Google Scholar
  83. Salomon, R. (1996b). Some Comments on Evolutionary Algorithm Theory. Evolutionary Computation 4(4), 405–415.Google Scholar
  84. Schlierkamp-Voosen D. (1994). Strategy Adaptation by Competition. Proc. Second European Congress on Intelligent Techniques and Soft Computing, 1270–1274.Google Scholar
  85. Schraudolph, N.N. & Belew, R.K. (1992). Dynamic Parameter Encoding for Genetic Algorithms. Machine Learning 9, 9–21.Google Scholar
  86. Schwefel, HP. (1995). Evolution and Optimum Seeking. Sixth-Generation Computer Technology Series. Wiley, New York.Google Scholar
  87. Sefrioui, M. & Périaux, J. (1996). Fast Convergence Thanks to Diversity. Proc. of the Fifth Annual Conference on Evolutionary Programming, 313–321.Google Scholar
  88. Shaefer, C.G. (1987). The ARGOT Strategy: Adaptive Representation Genetic Optimizer Technique. Proc. Second Int. Conf. on Genetic Algorithms(L. Erlbaum Associates, Hillsdale, MA).Google Scholar
  89. Surry, P.D. & Radcliffe, N.J. (1996). Real Representations. Foundations of Genetic Algorithms 4, R.K. Belew, M.D. Vose (Eds.) (Morgan Kaufmann Publishers, San Francisco), 343–363.Google Scholar
  90. Syswerda, G. (1989). Uniform Crossover in Genetic Algorithms. Proc. of the Third Int. Conf. on Genetic Algorithms. Schaffer, J.D. (Ed.) (Morgan Kaufmann Publishers, San Mateo), 2–9.Google Scholar
  91. Syswerda, G. (1991). Schedule Optimization Using Genetic Algorithms. Handbook of Genetic Algorithms, L. Davis (Ed.) (Van Nostrand Reinhold, New York), 332–349.Google Scholar
  92. Tate, D.M. & Smith A.E. (1993). Expected Allele Coverage and the Role of Mutation in Genetic Algorithms. Proceeding of the Fifth International Conference on Genetic Algorithms, S. Forrest (Ed.) (Morgan Kaufmann Publishers, San Mateo), 31–36.Google Scholar
  93. Törn, A. & Antanas Ž. (1989). Global Optimization. Lecture Notes in Computer Science, Vol 350, Springer, Berlin.Google Scholar
  94. Tsutsui, S., Ghosh, A., Corne, D. & Fujimoto, Y. (1997). A Real Coded Genetic Algorithm with an Explorer and an Exploiter Population. Proc. of the Seventh Int. Conf. on Genetic Algorithms, T. Bäck (Ed.) (Morgan Kaufmann Publishers, San Francisco), 238–245.Google Scholar
  95. Voigt H.M. (1992). Fuzzy Evolutionary Algorithms. Technical Report tr92038, International Computer Science Institute (ICSI), Berkeley.Google Scholar
  96. Voigt H. M. (1993). A Multivalued Evolutionary Algorithm. Technical Report tr93022, International Computer Science Institute (ICSI), Berkeley.Google Scholar
  97. Voigt, H. M. & Anheyer, T. (1994). Modal Mutations in Evolutionary Algorithms. Proc. of The First IEEE Conference on Evolutionary Computation, 88–92.Google Scholar
  98. Voigt, H.M., Mühlenbein, H. & Cvetković, D. (1995). Fuzzy Recombination for the Breeder Genetic Algorithm. Proc. of the Sixth Int. Conf. on Genetic Algorithms, L. Eshelman (Ed.) (Morgan Kaufmann Publishers, San Francisco), 104–111.Google Scholar
  99. Vose, M. D. (1991). Generalizing the Notion of Schemata in Genetic Algorithms. Artificial Intelligence 5, 385–396.Google Scholar
  100. Whitley, D., Starkweather, T. & Fuquay D. (1989). Scheduling Problems and Traveling Salesmen: The Genetic Edge Recombination Operator. Proc. of the Third Int. Conf. on Genetic Algorithms, J. David Schaffer (Ed.) (Morgan Kaufmann Publishers, San Mateo), 133–140.Google Scholar
  101. Whitley, D., Mathias, K. & Fitzhorn, P. (1991). Delta Coding: An Iterative Search Strategy for Genetic Algorithms. Proc. of the Fourth Int. Conf. on Genetic Algorithms, R. Belew and L.B. Booker (Ed.) (Morgan Kaufmmann, San Mateo), 77–84.Google Scholar
  102. Whitley, L.D. & Schaffer, J.D. (1992). Proc. of the Int. Workshop on Combinations of Genetic Algorithms and Neural Network. IEEE Computer Society Press.Google Scholar
  103. Wright, A. (1990). Genetic Algorithms for Real Parameter Optimization. Foundations of Genetic Algorithms, First Workshop on the Foundations of Genetic Algorithms and Classifier Systems, G.J.E. Rawlin (Ed.) (Morgan Kaufmann, Los Altos, CA), 205–218.Google Scholar
  104. Wright, A. (1991). Genetic Algorithms for Real Parameter Optimization. Foundations of Genetic Algorithms 1, G.J.E Rawlin (Ed.) (Morgan Kaufmann, San Mateo), 205–218.Google Scholar
  105. Yang, JM. & Kao, C.Y. (1996). A Combined Evolutionary Algorithm for Real Parameter Optimization. Proc. 1996 IEEE Int. Conf. on Evolutionary Computation, IEEE Service Center, Piscataway, 732–737.Google Scholar
  106. Yang, J-M. & Horng, J-T. & Kao, C.Y. (1997). A Continuous Genetic Algorithm for Global Optimization. Proc. of the Seventh Int. Conf. on Genetic Algorithms, T. Bäck (Ed.) (Morgan Kaufmann Publishers, San Francisco), 230–237.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • F. Herrera
    • 1
  • M. Lozano
    • 1
  • J.L. Verdegay
    • 1
  1. 1.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain

Personalised recommendations