Advertisement

Surveys in Geophysics

, Volume 20, Issue 1, pp 1–31 | Cite as

Modeling Atmospheric Chemistry: Interactions between Gas-Phase Species and Liquid Cloud/Aerosol Particles

  • Rolf Sander
Article

Abstract

For detailed modeling of atmospheric chemistry it is necessary to consider aqueous-phase reactions in cloud droplets and deliquesced aerosol particles. Often, the gas-phase concentration is in equilibrium with the aqueous phase. Then Henry′s law can be used to describe the distribution between the phases provided that the Henry′s law coefficient is known. In some cases, thermodynamic equilibrium will not be reached and it is necessary to use kinetic expressions of the rates involved. These rates depend on diffusion constants, accommodation coefficients, Henry′s law coefficients, particle size distributions, and several other parameters. This review describes how these processes can be treated in computer modeling and how the necessary data can be obtained. Even though it is written primarily for use in modeling atmospheric chemistry, some parts will also be useful for waste water and pesticide control and in other areas where the distribution of chemicals between the aqueous and the gas phase is important.

heterogeneous atmospheric chemistry chemistry Henry′s law accommodation coefficient cloud droplet aerosol particle solubility volatility diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkins, P.W.: 1986, Physical Chemistry, Oxford University Press.Google Scholar
  2. Battino, R., Clever, H.L., Fogg, P.G.T., and Young, C.L.: 1995, 'Introduction to the solubility data series. Solubility of gases in liquids', http://www.unileoben.ac.at/~eschedor/gl-intro.html.Google Scholar
  3. Betterton, E.A.: 1992, 'Henry's law constants of soluble and moderately soluble organic gases: Effects on aqueous phase chemistry', Adv. Environ. Sci. Technol. 24, 1-50.Google Scholar
  4. Bower, K.N., Hill, T.A., Coe, H., and Choularton, T.W.: 1991, 'SO2 oxidation in an entraining cloud model with explicit microphysics', Atmos. Environ. 25A, 2401-2418.Google Scholar
  5. Brimblecombe, P. and Clegg, S.L.: 1988, 'The solubility and behaviour of acid gases in the marine aerosol', J. Atmos. Chem. 7, 1-18.Google Scholar
  6. Chameides, W.L. and Davis, D.D.: 1982, 'The free radical chemistry of cloud droplets and its impact upon the composition of rain', J. Geophys. Res. 87C, 4863-4877.Google Scholar
  7. Chameides, W.L. and Stelson, A.W.: 1992, 'Aqueous phase chemical processes in deliquescent seasalt aerosols: A mechanism that couples the atmospheric cycles of S and sea salt', J. Geophys. Res. 97D, 20565-20580.Google Scholar
  8. De Bruyn, W.J., Swartz, E., Hu, J.H., Shorter, J.A., Davidovits, P., Worsnop, D.R., Zahniser, M.S., and Kolb, C.E.: 1995, 'Henry's law solubilities and Śetchenow coefficients for biogenic reduced sulfur species obtained from gas-liquid uptake measurements', J. Geophys. Res. 100D, 7245-7251.Google Scholar
  9. DeMore, W.B., Sander, S.P., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., Ravishankara, A.R., Kolb, C.E., and Molina, M.J.: 1997, 'Chemical kinetics and photochemical data for use in stratospheric modeling', JPL Publication 97-4, Jet Propulsion Laboratory, Pasadena, CA.Google Scholar
  10. Dubik, N.A., Titova, G.M., and Loshakova, E.I.: 1987, 'Partition coefficients of bromine and bromine chloride between air and natural brines', Issled. v Obl. Poluch. Magniya, Ioda, Broma i ikh Soed., M. pp. 53-57. (in Russian, see also Chem. Abstr., 109, 213154j).Google Scholar
  11. Frenzel, A., Scheer, V., Sikorski, R., George, C., Behnke, W., and Zetzsch, C.: 1998, 'Heterogeneous interconversion reactions of BrNO2, ClNO2, Br2, and Cl2', J. Phys. Chem. A 102, 1329-1337.Google Scholar
  12. Fuchs, N.A. and Sutugin, A.G.: 1971, Highly Dispersed Aerosols, Ann Arbor Science, Ann Arbor, Mich.Google Scholar
  13. Graedel, T.E. and Weschler, C.J.: 1981, 'Chemistry within aqueous atmospheric aerosols and raindrops', Rev. Geophys. Space Phys. 19, 505-539.Google Scholar
  14. Jacob, D.J.: 1986, 'Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate', J. Geophys. Res. 91D, 9807-9826.Google Scholar
  15. Jaenicke, R.: 1987, 'Aerosol physics and chemistry', In: Landolt-Börnstein New Series V/4b.Google Scholar
  16. Keene, W.C., Sander, R., Pszenny, A.A.P., Vogt, R., Crutzen, P.J., and Galloway, J.N.: 1998, 'Aerosol pH in the marine boundary layer: A review and model evaluation', J. Aerosol Sci. 29, 339-356.Google Scholar
  17. Kojima, K., Zhang, S., and Hiaki, T.: 1997, 'Measuring methods of infinite dilution coefficients and a database for systems including water', Fluid Phase Equilib. 131, 145-179.Google Scholar
  18. Lelieveld, J. and Crutzen, P.J.: 1991, 'The role of clouds in tropospheric photochemistry', J. Atmos. Chem. 12, 229-267.Google Scholar
  19. Lide, D.R. and Frederikse, H.P.R. (eds.): 1995, CRC Handbook of Chemistry and Physics, 76th Edition. CRC Press, Inc., Boca Raton, FL.Google Scholar
  20. Mackay, D. and Shiu, W.Y.: 1981, 'A critical review of Henry's law constants for chemicals of environmental interest', J. Phys. Chem. Ref. Data 10, 1175-1199.Google Scholar
  21. Mackay, D., Shiu, W.Y., and Sutherland, R.P.: 1979, 'Determination of air-water Henry's law constants for hydrophobic pollutants', Environ. Sci. Technol. 13, 333-337.Google Scholar
  22. Mills, I., Cvitaš, T., Homann, K., Kallay, N., and Kuchitsu, K.: 1993, International Union of Pure and Applied Chemistry: Quantities, Units and Symbols in Physical Chemistry, Blackwell Science, Boca Raton.Google Scholar
  23. Müller, F.: 1998, 'Compilation of accommodation coefficients', http://www.mi.uni-hamburg.de/technische_meteorologie/Meso/homepages/fmueller.html.Google Scholar
  24. Nathanson, G.M., Davidovits, P., Worsnop, D.R., and Kolb, C.E.: 1996, 'Dynamics and kinetics at the gas-liquid interface', J. Phys. Chem. 100, 13007-13020.Google Scholar
  25. Nielsen, F., Olsen, E., and Fredenslund, A.: 1994, 'Henry's law constants and infinite dilution activity coefficients for volatile organic compounds in water by a validated batch air stripping method', Environ. Sci. Technol. 28, 2133-2138.Google Scholar
  26. Pandis, S.N. and Seinfeld, J.H.: 1989, 'Sensitivity analysis of a chemical mechanism for aqueousphase atmospheric chemistry', J. Geophys. Res. 94D, 1105-1126.Google Scholar
  27. Pitzer, K.S. (ed.): 1991, Activity Coefficients in Electrolyte Solutions, 2nd Edition, CRC Press, Inc., Boca Raton, FL.Google Scholar
  28. Régimbal, J.-M. and Mozurkewich, M.: 1997, 'Peroxynitric acid decay mechanisms and kinetics at low pH', J. Phys. Chem. A 101, 8822-8829.Google Scholar
  29. Sahni, D.C.: 1966, 'The effect of a black sphere on the flux distribution in an infinite moderator', J. Nucl. Energy 20, 915-920.Google Scholar
  30. Sander, R.: 1996, 'Compilation of Henry's law constants for inorganic and organic species of potential importance in environmental chemistry (version 2)', http://www.mpch-mainz.mpg.de/~sander/res/henry.html.Google Scholar
  31. Sander, R. and Crutzen, P.J.: 1996, 'Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea', J. Geophys. Res. 101D, 9121-9138.Google Scholar
  32. Schwartz, S.E.: 1986, 'Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid-water clouds', In: W. Jaeschke (ed.): Chemistry of Multiphase Atmospheric Systems, NATO ASI Series, Vol. G6. pp. 415-471.Google Scholar
  33. Schwartz, S.E. and Freiberg, J.E.: 1981, 'Mass-transport limitation to the rate of reaction of gases in liquid droplets: Application to oxidation of SO2 in aqueous solutions', Atmos. Environ. 15, 1129-1144.Google Scholar
  34. Seinfeld, J.H. and Pandis, S.N.: 1998, Atmospheric Chemistry and Physics, John Wiley & Sons, Inc.Google Scholar
  35. Sievering, H., Boatman, J., Galloway, J., Keene, W., Kim, Y., Luria, M., and Ray, J.: 1991, 'Heterogeneous sulfur conversion in sea-salt aerosol particles: The role of aerosol water content and size distribution', Atmos. Environ. 25A, 1479-1487.Google Scholar
  36. Staudinger, J. and Roberts, P.V.: 1996, 'A critical review of Henry's law constants for environmental applications', Crit. Rev. Environ. Sci. Technol. 26, 205-297.Google Scholar
  37. Stephen, H. and Stephen, T.: 1963, Solubilities of inorganic and organic compounds, Vol. 1. Pergamon Press, Oxford.Google Scholar
  38. Vogt, R., Crutzen, P.J., and Sander, R.: 1996, 'A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer', Nature 383, 327-330.Google Scholar
  39. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., and Nuttall, R.L.: 1982, 'The NBS tables of chemical thermodynamic properties; Selected values for inorganic and C1 and C2 organic substances in SI units', J. Phys. Chem. Ref. Data 11, suppl. 2.Google Scholar
  40. Wilhelm, E., Battino, R., and Wilcock, R.J.: 1977, 'Low-pressure solubility of gases in liquid water', Chem. Rev. 77, 219-262.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Rolf Sander
    • 1
  1. 1.Air Chemistry DepartmentMax-Planck Institute for ChemistryMainzGermany

Personalised recommendations