Surveys in Geophysics

, Volume 18, Issue 5, pp 441–476 | Cite as

Review of Electric and Magnetic Fields Accompanying Seismic and Volcanic Activity



New observations of magnetic, electric and electromagnetic field variations, possibly related to recent volcanic and seismic events, have been obtained on Mt. Unzen in Japan, Reunion Island in Indian Ocean, the Long Valley volcanic caldera in California, and for faults in China and Russia, California and several other locations. For volcanic events, contributions from different physical processes can be identified during the various eruption stages. Slow processes (weeks to months) include near-surface thermal demagnetization effects, piezomagnetic effects, and effects from rotation/displacement of magnetized material. Rapid processes (seconds to days) include piezomagnetic effects from instantaneous stress redistribution with explosive eruptions and electrokinetic effects from rupture of high pressure fluid compartments commonly encountered in volcanic regions. For seismic events, the observed coseismic offsets are instantaneous, provided care has been taken to ensure sensors are insensitive to seismic shaking and are in regions of low magnetic field gradient. Simple piezomagnetic dislocation models based on geodetically and seismically determined fault parameters generally match the observed signals in size and sign. Electrokinetic effects resulting from rupture of fluid filled compartments at hydrostatic to lithostatic pore pressures can generate transient signals in the frequency band 100 Hz to 0.01 Hz. However, large-scale fluid driven processes are not evident in near-field measurements in the epicentral region minutes to weeks before large earthquakes. The subset of ionospheric disturbances generated by trapped atmospheric pressure waves (also termed gravity waves and/or acoustic waves, traveling ionospheric disturbances or TID's) that are excited by earthquakes and volcanic eruptions are common and propagate to great distances. These are known and expected consequences of earthquakes, volcanic explosions (and other atmospheric disturbances), that must be identified and their effects removed from VLF/ULF electromagnetic field records before associating new observations of ionospheric disturbances with earthquake activity.

earthquakes volcanoes electric fields magnetic fields mechanics prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aceves, R.L, Park, S.K., and Strauss, D.J.: 1996, ‘Statistical evaluation of the VAN method using the historic earthquake catalog in Greece’, Geophys. Res. Lett. 23, 1425–1428.Google Scholar
  2. Aki, K. and Richards, P.G.: 1980, Quantitative seismology–theory and methods, Freeman Press, San Francisco, 913 pp.Google Scholar
  3. Ahmad, M.: 1964, ‘A laboratory study of streaming potentials’, Geophys. Prospect. 12, 49–64.Google Scholar
  4. Baird, G.A. and Kennan, P.S.: 1985, ‘Electrical response of tourmaline rocks to a pressure impulse’, Tectonophysics 111, 147–l54.Google Scholar
  5. Banks, P.O., Stuart, and Liu, S.: 1991, ‘Piezomagnetic fields of screw dislocation fault models’, J. Geophys. Res. 96, 21575–21582.Google Scholar
  6. Barsukov, O.M.: 1972, ‘Variations of electric resistivity of mountain rocks connected with tectonic causes’, Tectonophysics 14, 273–277.Google Scholar
  7. Bernard, P.: 1992, ‘Plausibility of long distance electrotelluric precursors to earthquakes’, J. Geophys. Res. 97, 17,531–17,546.Google Scholar
  8. Blanchard, D.C.: 1964. Nature 201, 1164–1166.Google Scholar
  9. Brace, W.F., Orange, A.S., and Madden, T.R.: 1965, ‘The effect of pressure on the electrical resistivity of water-saturated crystalline rocks’, J. Geophys. Res. 70, 5669–5678.Google Scholar
  10. Brace, W.F. and Orange, A.S.: 1968a, ‘Electrical resistivity changes in saturated rocks during fracture and frictional sliding’, J. Geophys. Res. 73: 1443–1445.Google Scholar
  11. Brace, W.F. and Orange, A.S.: 1968b, ‘Further studies on the effects of pressure on electrical resistivity of rocks’, J. Geophys. Res. 73, 5407–5420.Google Scholar
  12. Brace, W.F.: 1975, ‘Dilatancy-related electrical resistivity change in rocks’, Pure Appl. Geophys. 113, 207–217.Google Scholar
  13. Brace, W.F.: 1980, ‘Permeability of crystalline and argillaceous rocks’, Int. J. Rock Mech. 17, 876–893.Google Scholar
  14. Brady, B.T. and Rowell, G.A.: 1986, ‘Laboratory investigations of the electrodynamics of rock fracture’, Nature 321, 488–490.Google Scholar
  15. Brady, B.T.: 1992, ‘Electrodynamics of rock fracture: implications for models of rock fracture’, in S.K. Park (ed.), Proceedings of the Workshop on Low Frequency Electrical Precursors, Rep. 92-15, Inst. of Geophys. and Planet. Phys., Univ. of Calif., Riverside.Google Scholar
  16. Chalmers, 1976, Atmospheric Electricity, Pergamon, pp. 515.Google Scholar
  17. Davis, P.M., Stacey, F.D., Zablocki, C.J., and Olsen, J.V.: 1979, ‘Improved signal discrimination in tectonomagnetism: discovery of a volcanomagnetic effect at Kilauea, Hawaii’, Phys. Earth Plan. Int. 19, 331–336.Google Scholar
  18. Davis, P.M., Jackson, D.D., Searls, C.A., and McPherron, R.L.: 1981, ‘Detection of tectonomagnetic events using multichannel predictive filtering’, J. Geophys. Res. 86, 1731–1737.Google Scholar
  19. Davis, P.M. and Johnston, M.J.S.: 1983, ‘Localized geomagnetic field changes near active faults in California,1974–1980’, J. Geophys. Res. 88, 9452–9460.Google Scholar
  20. Davis, P.M., Pierce, D.R., McPherron, R.L., Dzurisin, D., Murray, T., Johnston, M.J.S., and Mueller, R.: 1984, ‘A volcanomagnetic observation on Mount St. Helens, Washington’, Geophys. Res. Lett. 11, 225–228.Google Scholar
  21. Dobrovolsky, I.P., Gershenzon, N. I., and Gokhberg, M.B.: 1989, ‘Theory of electrokinetic effects occurring at the final stage in the preparation of a tectonic earthquake’, Phys. Earth Planet. Int. 57, 144–156.Google Scholar
  22. Dologlou-Revelioti, E. and Varotsos, P.: 1986, ‘Thermally stimulated currents in rocks, 1’, Geophys. 59, 177–182.Google Scholar
  23. Draganov, A.B., Inan, U.S., and Taranenko, Y.N.: 1991, ‘ULF magnetic signatures at the Earth surface due to ground water flow: a possible precursor to earthquakes’, Geophys. Res. Lett. 18, 1127–1130.Google Scholar
  24. Emeleus, T.G.: 1977, ‘Thermomagnetic measurements as a possible tool in prediction of volcano activity in the volcanoes of the Rabaul Caldera, Papua New Guinea’, J. Volc. Geotherm. Res. 2, 343–359.Google Scholar
  25. Ernst, T., Jankowski, J., Rozluski, C., and Teisseyre, R.: 1993, ‘Analysis of the electromagnetic field recorded in the Friuli seismic zone, Northeast Italy’, Tectonophys. 224, 141–148.Google Scholar
  26. Dzurisin, D., Denlinger, R.P., and Rosenbaum, J.G.: 1990, ‘Cooling rate and thermal structure determined from progressive magnetization of the dacite dome at Mount St. Helens, Washington’, Bull. Seis. Soc. Am. 95, 2763–2780.Google Scholar
  27. Fenoglio, M.A., Fraser-Smith, A.C., Beroza, G.C., and Johnston, M.J.S.: 1993, ‘Comparison of ultra-low frequency electromagnetic signals with aftershock activity during the 1989 Loma Prieta earthquake sequence’, Bull. Seis. Soc. Am. 83, 347–357.Google Scholar
  28. Fenoglio, M.A., Johnston, M.J.S., and Byerlee, J.: 1995, ‘Magnetic and electric fields associated with changes in high pore pressure in fault zones–Application to the Loma Prieta ULF emissions’, J. Geophys. Res. 100, 12951–12958.Google Scholar
  29. Finkelstein, D., Hill, R.D., and Powell, J.R.: 1973, ‘The piezoelectric theory of earthquake lightning’, J. Geophys. Res. 78, 992–993.Google Scholar
  30. Fitterman, D.V. and Madden, T.R.: 1977, ‘Resistivity observations during creep events at Melendy Ranch, California’, J. Geophys. Res. 82, 5401–5408.Google Scholar
  31. Fitterman, D.V.: 1978, ‘Electrokinetic and magnetic anomalies associated with dilatant regions in a layered earth’, J Geophys. Res. 83, 5923–5928.Google Scholar
  32. Fitterman, D.V.: 1979, ‘Theory of electrokinetic-magnetic anomalies in a faulted half-space’, J. Geophys. Res. 84, 6031–6040.Google Scholar
  33. Fitterman, D.V.: 1981, ‘Correction to “Theory of electrokinetic-magnetic anomalies in a faulted half-space”’, J. Geophys. Res. 86, 9585–9588.Google Scholar
  34. Francis, S.H.: 1975, ‘Global propagation of atmospheric gravity waves: a review’, J. Atmos. Terr. Phys. 37, 1011–1054.Google Scholar
  35. Fraser, D.C.: 1966, ‘The magnetic fields of ocean waves’, Geophys. J. R. Astron. Soc. 11, 507–517.Google Scholar
  36. Fraser-Smith, A.C., Bernardi, A., McGill, P.R., Ladd, M.E., Helliwell, R.A., and Villard, O.G., Jr.: 1990, ‘Low-frequency magnetic field measurements near the epicenter of the M7.1 Loma Prieta earthquake’, Geophys. Res. Lett. 17, 1465–1468.Google Scholar
  37. Fraser-Smith, A.C., Bernardi, A., McGill, P.R., Ladd, M.E., Helliwell, R.A., and Villard, O.G., Jr.: 1990, ‘Ultra-low frequency magnetic field measurements in Southern California during the Northridge earthquake of 17 January, 1994’, Geophys. Res. Lett. 21, 2195–2198.Google Scholar
  38. Freund, F., Whang, E.J., and Lef, J.: 1992, ‘Hole-type charge carriers in olivine and feldspars: key to the enigmatic electric earthquake phenomena?, in S.K. Park (ed.), Proceedings of the Workshop on Low Frequency Electrical Precursors, Rep. 92-15, Inst. of Geophys. and Planet. Phys., Univ. of Calif., Riverside.Google Scholar
  39. Fujinawa, Y., Kumagai, T., and Takahashi, K.: 1992, ‘A study of anomalous underground electric field variations associated with a volcanic eruption’, Geophys. Res. Lett. 19, 9–12.Google Scholar
  40. Fujinawa, Y. and Takahashi, K.: 1994, ‘Anomalous VLF subsurface electric field changes preceding earthquakes’, in M. Hayakawa and Y. Fujinawa (eds.), Electromagnetic Phenomena Related to Earthquake Prediction, Terra Scientific Publishing Company., pp. 131–147.Google Scholar
  41. Gamble, T.D., Goubau, W.M., and Clarke, J.: 1979, ‘Magnetotellurics with a remote reference’, Geophysics 44, 53–58.Google Scholar
  42. Gokhberg, M.B., Morgounov, V.A., Yoshino, T., and Tomizawa, I.: 1982, ‘Experimental measurements of electromagnetic emissions possibly related to earthquakes in Japan’, J. Geophys. Res. 87, 7824–7828.Google Scholar
  43. Hamada, K.: 1992, ‘Statistical evaluation of the SES predictions issued in Greece: alarm and success rates’, Tectonophysics 224, 203–210.Google Scholar
  44. Hamano, Y., Boyd, R., Fuller, M., and Lanham, M.: 1989, Induced susceptibility anisotropy of igneous rocks caused by uniaxial compression’, J. Geomag. Geoelec. 41, 203–220.Google Scholar
  45. Hashimoto, T. and Tanaka, Y.: 1995, ‘A large self-potential anomaly on Unzen Volcano, Shimabara Peninsula, Kyushu Island, Japan’, Geophys. Res. Lett. 22, 191–194.Google Scholar
  46. Hayakawa, M. and Fujinawa, F. (eds.): 1994, Electromagnetic Phenomena Related to Earthquake Prediction, Terr.Sci.Pub.Comp, Tokyo, pp 677.Google Scholar
  47. Henderson, T.R., Sonwalker, V.S., Helliwell, R.A., Inan, U.S., and Fraser-Smith, A.C.: 1993, ‘A search for ELF/VLF emissions induced by earthquakes as observed in the ionosphere by the DE-2 satellite’, J. Geophys. Res. 98, 9503–9509.Google Scholar
  48. Honkura, Y., Niblett, E.R., and Kurtz, R.D.: 1976, ‘Changes in magnetic and telluric fields in a seismically active region of Eastern Canada: preliminary results of earthquake prediction studies’, Tectonophysics 34, 219–230.Google Scholar
  49. Honkura, Y. and Kuwata, Y.: 1993, ‘Estimation of electric fields in the conducting earth’s crust for oscillating electric current dipole sources and implications for anomalous electric fields associated with earthquakes’, Tectonophys. 224, 257–264.Google Scholar
  50. Hurst, A.W. and Christoffel, D.A.: 1973, ‘Surveillance of white island volcano 1968–72. Thermo-magnetic effects due to volcanic activity’, New Zealand. J. Geol. Geophys. 16, 965–972.Google Scholar
  51. Ishido, T. and Mizutani, M.: 1981, ‘Experimental and theoretical basis of electrokinetic phenomena to rock-water systems and its applications to geophysics’, J. Geophys. Res. 86, 1763–1775.Google Scholar
  52. Jackson, D.B. and Kauahikaua, J.: 1987, ‘Regional self-potential anomalies at Kilauea Volcano’, U.S.G.S. Professional Paper 1350 40, 947–959.Google Scholar
  53. Johnston, M.J.S.: 1978, ‘Local magnetic field variations and stress change near a slip discontinuity on the San Andreas fault’, J. Geomag. Geoelec. 30, 511–522.Google Scholar
  54. Johnston, M.J.S., Mueller, R.J., and Dvorak, J.: 1981, ‘Volcanomagnetic observations during eruptions, May–August 1980, in the 1980 eruptions of Mount St. Helens’, Washington, U.S. Geol. Surv. Profess. Paper, 1250, pp. 183–189.Google Scholar
  55. Johnston, M.J.S., Mueller, R.J., Ware, R.H., and Davis, P. M.: 1984, ‘Precision of geomagnetic measurements in a tectonically active region’, J. Geomag. Geoelec. 36, 83–95.Google Scholar
  56. Johnston, M.J.S., Linde, A.T., Gladwin, M.T., and Borcherdt, R.D.: 1987, ‘Fault failure with moderate earthquakes’, Tectonophysics 144, 189–206.Google Scholar
  57. Johnston, M.J.S. and Mueller, R.J.: 1987, ‘Seismomagnetic observation with the July 8, 1986, ML 5.9 North Palm Springs earthquake’, Science 237, 1201–1203.Google Scholar
  58. Johnston, M.J.S.: 1989, ‘Review of magnetic and electric field effects near active faults and volcanoes in the U.S.A.’, Phys. Earth Planet. Int. 57, 47–63.Google Scholar
  59. Johnston, M.J.S. and Parrot, M. (eds.): 1989, ‘Seismoelectromagnetic effects’, Phys. Earth Planet. Inter. 57, 1–177.Google Scholar
  60. Johnston, M.J.S., Mueller, R.J., and Sasai, Y.: 1994, ‘Magnetic field observations in the near-field of the 28 June 1992 M7.3 Landers, California, earthquake’, Bull. Seis. Soc. Am. 84, 792–798.Google Scholar
  61. Kalashnikov, A.C.: 1954, ‘The possible application of magnetometric methods to the question of earthquake indications’, Tr. Geofiz. Inst. Akad. Nauk. S.S.S.R., Sb. Statei. 25, 162–180.Google Scholar
  62. Kalashnikov, A.C. and Kapitsa, S.P.: 1952, ‘Magnetic susceptibility of elastically stressed rocks’, Proc. (Doclady) Acad. Sci. U.S.S.R. 86, 521–523.Google Scholar
  63. Kapitsa, S.P.: 1955, ‘Magnetic properties of eruptive rocks exposed to mechanical stresses’, Izv. Akad. Nauk. S.S.S.R., Ser. Geofiz.6, 489–504.Google Scholar
  64. Kean, W.F., Day, R., Fuller, M., and Schmidt, V.A.: 1976, ‘The effect of uniaxial compression on the initial susceptibility of rocks as a function of grain size and composition of their constituent titanomagnetites’, J. Geophys. Res. 85, 861–872.Google Scholar
  65. Kern, J.W.: 1961, ‘Effect of moderate stresses on directions of thermoremanent magnetization’, J. Geophys. Res. 66, 3801–3805.Google Scholar
  66. Langbein, J.O., Hill, D.P., Parker, T.N., and Wilkinson, S.K.: 1993, ‘An episode of reinflation of Long Valley Caldera, Eastern California: 1989–1991, J. Geophys. Res. 98, 15851–15870.Google Scholar
  67. Lisowski, M., Prescott, W.H., Savage. J.C., and Johnston, M.J.S.: 1990, ‘Geodetic estimate of coseismic slip during the 1989 Loma Prieta, California, earthquake’, Geophys. Res. Lett. 17, 1437–1440.Google Scholar
  68. Lockner, D.A. and Byerlee, J.D.: 1985, ‘Complex resistivity of fault gouge and its significance for earthquake lights and induced polarization’, Geophys. Res. Lett. 12, 211–214.Google Scholar
  69. Lockner, D.A. and Byerlee, J.D.: 1986, ‘Changes in complex resistivity during creep in granite,’ Pure App. Geophys. 124, 659–676.Google Scholar
  70. Lockner, D.A., Byerlee, J.D., Kuksenko, V., Ponomarev, A., and Sidorin., A.: 1991, ‘Quasistatic fault growth and shear fracture energy in granite’, Nature, 350, 39–42.Google Scholar
  71. Lowell, F. and Rose-Innes, A. C.: 1980, Adv. Phys. 29, 947–1023.Google Scholar
  72. Madden, T.R., LaTorraca, G.A., and Park, S.K.: 1992, ‘Electrical conductivity variations around the Palmdale section of the San Andreas fault zone’, J. Geophys. Res. 98, 795–808.Google Scholar
  73. Matteson, M.J.: 1971, J. Colloid. and Interface Science 37, 879–890.Google Scholar
  74. Martin, III, R.J.: 1980, ‘Is piezomagnetism influenced by microcracks during cyclic loading’, J. Geomag. Geoelec. 32, 741–755.Google Scholar
  75. Miyakoshi, J., Shiozaki, I., and Nakamura, M.: 1994, ‘Observation of geoelectric potential difference in Wakayama between multi-channeled grounded electrodes of short-spacing in the hope of detecting an earthquake precursor’, in M. Hayakawa and Y. Fujinawa eds., Electromagnetic Phenomena Related to Earthquake Prediction, Terra Scientific Publishing Company, pp. 55–70.Google Scholar
  76. Mizutani, H. and Ishido, T.: 1976, ‘A new interpretation of magnetic field variation associated with Matsushiro earthquakes’, J. Geomagn. Geoelectr. 28, l79–188.Google Scholar
  77. Molchanov, O.A. Mazhaeva, O., Goliavin, A.N., and Hayakawa, M.: 1993, ‘Observation by the InterCosmos-24 Satellite of ELF-VLF electromagnetic emissions associated with earthquakes’, Annales Geophysicale 11, 431–440.Google Scholar
  78. Mori, T., Ozima, M., and Takayama, H.: 1993, ‘Real-time detection of anomalous geoelectric changes’, Phys. Earth. Plan. Int. 77, 1–12.Google Scholar
  79. Mueller, R.J., Johnston, M.J.S., Smith, B.E., and Keller, V.G.: 1981, ‘U.S. geological survey magnetometer network and measurement techniques in western U.S.A.’, U.S.G.S. Open-File Report 81-1346, Menlo Park, CA.Google Scholar
  80. Mueller, R.J. and Johnston, M.J.S.: 1990, ‘Seismomagnetic effect generated by the October 18, 1989, M7.1 Loma Prieta, California, earthquake’, Geophys. Res. Lett. 17, 1231–1234.Google Scholar
  81. Mueller, R.J., Johnston, M.J.S., and Langbein, J.: 1991, ‘Possible tectonomagnetic effects observed from mid-1989 to mid-1990, in Long Valley Caldera, California’ Geophys. Res. Letts. 18, 601–604.Google Scholar
  82. Mueller, R.J. and Johnston, M.J.S.: 1996, ‘Magnetic field monitoring near active faults and volcanic Calderas in California: 1974–1995’, (accepted Phys. Earth. Plan. Int.).Google Scholar
  83. Mulargia, F. and Gasperini, P.: 1992, ‘Analyzing the statistical validity of earthquake precursors, an application to the “VAN” method’, Geophys. J. Int. 111, 32–44.Google Scholar
  84. Nagao, T., Uyeda, S., Asai, Y., and Kono, Y.: 1996, ‘Recently observed anomalous changes in geoelectric potential preceding earthquakes in Japan’, (submitted to Phys. Earth. Planet. Int.).Google Scholar
  85. Nagata, T.: 1969, ‘Basic magnetic properties of rocks under the effect of mechanical stresses’, Tectono-physics 21, 427–445.Google Scholar
  86. Nourbehecht, B.: 1963, ‘Irreversible thermodynamic effects in inhomogeneous media and their applications in certain geoelectric problems. thesis’, Mass. Inst. of Tech., Cambridge, Mass.Google Scholar
  87. Ohnaka, M. and Kinoshita, H.: 1968, ‘Effects of uniaxial compression on remanent magnetization’, J. Geomag. Geoelec. 20, 93–99.Google Scholar
  88. Oike, K. and Ogawa, T.: 1986, ‘Electromagnetic radiation from shallow earthquakes observed in the LF range’, J. Geomag. Geoelec. 38, 1031–1041.Google Scholar
  89. Oshiman, N., Sasai, Y., Ishikawa, Y., Honkura, Y., and Tanaka, H.: 1983., ‘Local changes in the geomagnetic total intensity associated with crustal uplift in the Izu Peninsula, Japan’, Earthq. Pred. Res. 2, 209–219.Google Scholar
  90. Ozima, M., Mori, T., and Takayama, H.: 1989, ‘Observation of earth-potential using telegraph facilities and analysis with BAYTAP-G’, J. Geomag. Geoelec. 41, 945–962.Google Scholar
  91. Park, S.K.: 1991, ‘Monitoring changes of resistivity prior to earthquakes in Parkfield, California, with telluric arrays’, J. Geophys. Res. 96, 14,211–14,237.Google Scholar
  92. Park S.K. and Fitterman, D.V.: 1990, ‘Sensitivity of the telluric monitoring array in Parkfield, Cali-fornia, to changes of resistivity’, J. Geophys. Res. 95, 15,557–15,571.Google Scholar
  93. Park, S.K, Johnston, M.J.S., Madden, T.R., Morgan, F.D., and Morrison, H.F.: 1993, ‘Electromagnetic precursors to earthquakes in the ULF band: a review of observations and mechanisms’, Rev. Geophys. 31, 117–132.Google Scholar
  94. Parrot, M., Achache, J., Berthelier, J.J., Blanc, E., Deschamps, A., Lefeuvre, F., Menvielle, M., Plantet, J.L., Tarits, P., and Villain, J.P.: 1993, ‘High-frequency seismo-electromagnetic effects’, Phys. Earth Planet. Int. 77, 65–83.Google Scholar
  95. Parrot, M. and Johnston, M.J.S. (Eds.): 1993, ‘Seismo-electromagnetic effects’, Phys. Earth Planet. Inter. 77, 1–137, 1993.Google Scholar
  96. Parrot, M.: 1994, ‘Statistical study of ELF/VLF emissions recorded by a low-altitude satellite during seismic events’, J. Geophys. Res. 99, 23,339–23,34-.Google Scholar
  97. Petiau, G. and Dupis, G.: 1980, ‘Noise, temperature coefficient, and long time stability of electrodes for telluric observations’, Geophys. Prospect. 28, 792–804.Google Scholar
  98. Pike, S.J., Henyey, T.L., Revol, J., and Fuller, M.D.: 1981, ‘High-pressure apparatus for use with a cryogenic magnetometer’, J. Geophys. Res. 33, 449–466.Google Scholar
  99. Revol, J., Day, R., and Fuller, M.: 1977, ‘Magnetic behavior of magnetite and rocks stressed to failure–relation to earthquake prediction’, Earth and Planet. Sci. Lett. 37, 296–306.Google Scholar
  100. Rees, R., Rymer, H., and McGuire, W.I.: 1995, ‘Micromagnetic variations at Mount Etna, Sicily’, Abs. IUGG Meeting, Boulder, Colorado, p. 236.Google Scholar
  101. Rikitake, T.: 1966, ‘Elimination of non-local changes from total intensity values of the geomagnetic field’, Bull. Earthq. Res. Inst. 44, 1041–1070.Google Scholar
  102. Rikitake, T.: 1968, ‘Geomagnetism and earthquake prediction’, Tectonophysics 6, 59–68.Google Scholar
  103. Rikitake, T.: 1976, Earthquake Prediction, Elsevier, New York, pp. 357.Google Scholar
  104. Rikitake, T. and Yokoyama, I.: 1955, ‘Volcanic activity and changes in geomagnetism’, J. Geophys. Res. 60, 165–172.Google Scholar
  105. Rozluski, C.P. and Yukutake, T.: 1993, ‘Preliminary analysis of magnetotelluric and seismic activity in the Chubu district, Japan’, Acta. Geophys. Polonica 41, 17–26.Google Scholar
  106. Sasai, Y.: 1980, ‘Application of the elasticity dislocation theory of dislocations to tectonomagnetic modeling’, Bull. Earthq. Res. Inst. 55, 387–447.Google Scholar
  107. Sasai, Y.: 1983, ‘A surface integral representation of the tectonomagnetic field based on the linear piezomagnetic effect’, Bull. Earthq. Res. Inst. 58, 763–785.Google Scholar
  108. Sasai, Y., Shimomura, T., Hamano, Y., Utada, H., Yoshino, T., Koyama, S., Ishikawa, Y., Nakagawa, I., Yokoyama, Y., Ohno, M., Watanabe, H., Yukutake, T., Tanaka, Y., Yamamoto, Y., Nakaya, K., Tsunomura, S., Muromatsu, F., and Murakami, R.: 1999, ‘Volcano-magnetic effect observed during the 1986 eruption of Izu-Oshima volcano’, J. Geomag. Geoelec. 42, 291–317.Google Scholar
  109. Sasai, Y.: 1991a, ‘Piezomagnetic field associated with the Mogi model revisited: analytic solution for a finite spherical source’, J. Geomag. Geoelec. 43, 21–64.Google Scholar
  110. Sasai, Y.: 1991b, ‘Tectonomagnetic modeling on the basis of linear piezomagnetic effect,’ Bull. Earthq. Res. Inst. 66, 585–722.Google Scholar
  111. Sasai, Y.: 1994, ‘Resolution of contradiction between seismomagnetic models’, J. Geomag. Geoelec. 42, 329–340.Google Scholar
  112. Shamsi, S. and Stacey, F.D.: 1969, ‘Dislocation models and seismomagnetic calculations for California 1906 and Alaska 1964 earthquakes’, Bull. Seis. Soc. Am. 59, 1435–1448.Google Scholar
  113. Shercliff, J.A.: 1965, A Textbook of Magnetohydrodynamics, Pergamon Press, London, 265 pp.Google Scholar
  114. Shnirman, M., Schreider, S., and Dmitrieva, O.: 1993, ‘Statistical evaluation of the VAN predictions issued during the period 1987–1989’, Tectonophys. 224, 211–221.Google Scholar
  115. Stacey, F.D.: 1962, ‘Theory of magnetic susceptibility of stressed rocks’, Phil. Mag. 7, 551–556.Google Scholar
  116. Stacey, F.D.: 1964, ‘The seismomagnetic effect’, Pure Appl. Geophys. 58, 5–22.Google Scholar
  117. Stacey, F.D., Barr, K.G., and Robson, G.R.: 1965, ‘The volcanomagnetic effect,’ Pure Appl. Geophys. 62, 96–104.Google Scholar
  118. Stacey, F.D. and Johnston, M.J.S.: 1972, ‘Theory of the piezomagnetic effect in titanomagnetite-bearing rocks’, Pure Appl. Geophys. 97, 146–155.Google Scholar
  119. Stacey, F.D. and Banerjee, S.K.: 1974, The Physical Principles of Rock Magnetism., Amsterdam: Elsevier.Google Scholar
  120. Stacey, F.D.: 1992, Physics of the Earth, Third Edition, Brookfield Press, 513 pp.Google Scholar
  121. Tanaka, Y.: 1993, ‘Eruption mechanism inferred from geomagnetic changes with special attention to the 1989–1990 activity of Aso volcano’, J. Volc. Geotherm. Res. 56, 319–338.Google Scholar
  122. Tanaka, T.: 1995, ‘Volcanomagnetic effects on the Unzen volcano (1990–1992)’, J. Geomag. Geoelec. 47, 325–336.Google Scholar
  123. Tuck, G.T., Stacey, F.D., and Starkey, J.: 1977, ‘A search for the piezoelectric effect in quartz-bearing rock’, Tectonophysics 39, 7–11.Google Scholar
  124. Utada, H.: 1993, ‘On the physical background of the VAN earthquake prediction method’, Tectono-phys. 224, 149–152.Google Scholar
  125. Varotsos, P. and Alexopoulos, K.: 1987, ‘Physical properties of the variations in the electric field of the electric field of the Earth preceding earthquakes, III’, Tectonophysics 136, 335–339.Google Scholar
  126. Varotsos, P. and Lazaridou, M.: 1991, ‘Latest aspects on earthquake prediction in Greece based on seismic electric signals’, Tectonophysics 188, 321–347.Google Scholar
  127. Varotsos, P., Alexopoulos, K., and Azaridou, M.: 1993a, ‘Latest aspects of earthquake prediction in Greece based on seismic electric signals, II’, Tectonophys. 224, 1–38.Google Scholar
  128. Varotsos, P., Alexopoulos, K., Lazaridou-Varotsou, M., and Nagao, T.: 1993b, ‘Earthquake predictions issued in Greece by seismic electric signals since February 6, 1990’, Tectonophys. 224, 269–288.Google Scholar
  129. Varotsos, P., Eftaxias, K., Lazaridou, M., Nomicos, K., Bogris, N., Makris, G. Antonopoulos, G., and Kopanas, J.: 1996, ‘Recent earthquake predictions results in Greece based on the observation of seismic electric signals’, Acta. Geophysica Polonica (in press).Google Scholar
  130. Ware, R.H., Johnston, M.J.S., and Mueller, R.J.: 1985, ‘A comparison of proton and self-calibrating rubidium magnetometers for tectonomagnetic studies’, J. Geomag. Geoelec. 37, 1051–1061.Google Scholar
  131. Warwick, J.W., Stoker, C., and Meyer, T.R.: 1982, ‘Radio emission associated with rock fracture: possible application to the great Chilean earthquake of May 22, 1960’, J. Geophys. Res. 87, 2851–2859.Google Scholar
  132. Williamson, S.J. and Kaufman, L.: 1981, ‘Biomagnetism’, J. Magn. Mat. 22, 129–201.Google Scholar
  133. Wilson, E.: 1922, ‘On the susceptibility of feebly magnetic bodies as affected by compression’,Proc. Roy. Soc. A. 101, 445–452.Google Scholar
  134. Yamazaki, Y.: 1965, ‘Electrical conductivity of strained rocks (1st paper), laboratory experiments on sedimentary rocks’, Bull. Earthq. Res. Inst. 44, 783–802.Google Scholar
  135. Yamazaki, Y.: 1974, ‘Coseismic resistivity steps’, Tectonophysics 22, 159–171.Google Scholar
  136. Yoshino, T., Tomizawa, I., and Shibata, T.: 1985, ‘Possibility of using a direction finding technique to locate earthquake epicenters from electromagnetic precursor radiation’, Ann. Geophys. 3, 727–730.Google Scholar
  137. Yoshino, T.: 1991, ‘Low-frequency seismogenic electromagnetic emissions as precursors to earthquakes and volcanic eruptions in Japan’, J. Sci. Explor. 5, 121–144.Google Scholar
  138. Yoshino, T. and Sato, H.: 1993, ‘The study of exciting process of seismogenic emission at epicenter by magnetic flux based on statistical analysis’, JISHIN 16, 8–24.Google Scholar
  139. Yukutake, T.: 1990a, ‘An overview of the eruptions of Oshima volcano, Izu, 1986–1987, from the geomagnetic and geoelectric standpoints’, J. Geomag. Geoelec. 42, 141–355.Google Scholar
  140. Yukutake, T., Utada, H., Yoshino, T., Watanabe, H., Hamano, Y., Sasai, Y., Kimoto, E., Otani, K., and Shimomura, T.: 1990b, ‘Changes in the geomagnetic total intensity observed before the eruption of Oshima volcano in 1986’, J. Geomag. Geoelec. 42, 277–290.Google Scholar
  141. Yukutake, T., Yoshino, T., Utada, H., Watanabe, H., Hamano, Y., and Shimomura, T.: 1990c, ‘Changes in the electrical resistivity of the central cone, Miharayama, of Oshima volcano observed by a direct current method’, J. Geomag. Geoelec. 42, 151–168.Google Scholar
  142. Zlotnicki, J. and Le Mouel, J.L.: 1988, ‘Volcano-magnetic effects observed on Piton de la Fournaise volcano (Reunion island): 1985–1987’, J. Geophys. Res. 93, 9157–9171.Google Scholar
  143. Zlotnicki, J. and Le Mouel, J.L.: 1990, ‘Possible electrokinetic origin of large magnetic variations at La Fournaise volcano’, Nature 343, 633–636.Google Scholar
  144. Zlotnicki, J., Le Mouel, J.L., and Pambrun, C.: 1992, ‘Variations anomales lentes du champ magne-tique terrestre sur le Piton de la Fournaise’, Compte Rendus de l’ Academie des Sciences, Paris 314, 661–669.Google Scholar
  145. Zlotnicki, J., Le Mouel, J.L., Delmond, J.C., Pambrun, C., and Delorme, H.: 1993, ‘Magnetic variations on Piton de la Fournaise volcano. Volcanomagnetic signals associated with the November 6 and 30, 1987, eruptions’, J. Volc. Geotherm. Res. 56, 281–296.Google Scholar
  146. Zlotnicki, J., Michel, S., and Ammen, C.: 1994, ‘Anomalies de polarization spontanee et systems convectifs sur le volcan du Piton de la Fournaise (Ile de la Reunion, France)’, Compte Rendus de l’ Academie des Sciences, Paris 318, 1325–1331.Google Scholar
  147. Zlotnicki, J. and Bof, M.: 1996, ‘Volcanomagnetic signals associated with the quasi-static continuous activity of the andesitic Merapi volcano (Indonesia): 1990–1995. (Accepted PEPI).Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  1. 1.U.S. Geological SurveyMenlo ParkUSA

Personalised recommendations