Plant Molecular Biology

, Volume 42, Issue 6, pp 819–832 | Cite as

pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation

  • Roger P. Hellens
  • E. Anne Edwards
  • Nicola R. Leyland
  • Samantha Bean
  • Philip M. Mullineaux


Binary Ti vectors are the plasmid vectors of choice in Agrobacterium-mediated plant transformation protocols. The pGreen series of binary Ti vectors are configured for ease-of-use and to meet the demands of a wide range of transformation procedures for many plant species. This plasmid system allows any arrangement of selectable marker and reporter gene at the right and left T-DNA borders without compromising the choice of restriction sites for cloning, since the pGreen cloning sites are based on the well-known pBluescript general vector plasmids. Its size and copy number in Escherichia coli offers increased efficiencies in routine in vitro recombination procedures. pGreen can replicate in Agrobacterium only if another plasmid, pSoup, is co-resident in the same strain. pSoup provides replication functions in trans for pGreen. The removal of RepA and Mob functions has enabled the size of pGreen to be kept to a minimum. Versions of pGreen have been used to transform several plant species with the same efficiencies as other binary Ti vectors. Information on the pGreen plasmid system is supplemented by an Internet site ( through which comprehensive information, protocols, order forms and lists of different pGreen marker gene permutations can be found.

Agrobacterium binary vectors plant transformation reporter genes selectable marker genes Ti vector 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alting-Mees, M.A. and Short, J.M. 1989. pBluescript II: gene mapping vectors. Nucl. Acids Res. 17: 9494.Google Scholar
  2. An, G., Ebert, P.R., Mitra, A. and Ha, S.B. 1988. Binary vectors. In: S.B. Gelvin and R.A. Schilperoort (Eds.), Plant Molecular Biology Manual, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. A3: 1–19.Google Scholar
  3. Battacharyya, M.K., Stermer, B.A. and Dixon, R.A. 1994. Reduced variation in transgene expression from a binary vector with selectable markers at the right and left T-DNA borders. Plant J. 6: 957–968.Google Scholar
  4. Bean, S.J., Gooding, P.G., Mullineaux, P.M. and Davies, D.R. 1997. A simple system for pea transformation. Plant Cell Rep. 16: 513–519.Google Scholar
  5. Bechtold, N., Ellis J. and Pelletier. G. 1993. In planta Agro bacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad. Sci. Vie 316: 1194–1199.Google Scholar
  6. Bevan, M. 1984. Binary Agrobacterium vectors for plant transformation. Nucl. Acids Res. 12: 8711–8721.Google Scholar
  7. Bevan, M.W., Flavell, R.B. and Chilton, M.D. 1983. A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304: 184–187.Google Scholar
  8. Chang, A.C.Y. and Cohen, S.N. 1978. Construction and characterisation of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bact. 134: 1141–1156.Google Scholar
  9. Cheng, M., Fry, J.E., Pang, S., Zhou, H., Hironaka, C.M., Duncan, D.R., Conner, T.W. and Wan, Y. 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115: 971–980.Google Scholar
  10. Croy, R.R.D. 1993. Plant selectable genes, reporter genes and promoters. In: R.R.D. Croy (Ed.), Plant Molecular Biology LABFAX, Bios Scientific Publishers, Oxford, pp. 149–182.Google Scholar
  11. Deblaere, R., Bytebier, B., De Greve, H., Debroek, F., Schell, J., Van Montagu, M. and Leemans, J. 1985. Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer in plants. Nucl. Acids Res. 13: 4777–4758.Google Scholar
  12. De Block, M., Botterman, J., Vandewicle, M., Dockx, J., Thoen, C., Gosselé, V., Rao Movva, N., Thompson, C., Van Montagu, M. and Leemans, J. 1987. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6: 2513–2518.Google Scholar
  13. Doran, K.S., Konieczny, I. and Helinski, D.R. 1998. Replication origin of the broad host range plasmid RK2. Positioning of various motifs is critical for initiation of replication. J. Biol. Chem. 273: 8447–8453.Google Scholar
  14. Edwards, A., Marshall, J., Sidebottom, C., Visser, R.G.F., and Smith, A.M. 1995. Biochemical and molecular characterization of a novel starch synthase from potato tubers. Plant J. 8: 283–294.Google Scholar
  15. Ellis, J.R. 1993. Plant tissue culture and genetic transformation. In: R.R.D. Croy (Ed.) Plant Molecular Biology LABFAX, Bios Scientific Publishers, Oxford, pp. 253–279.Google Scholar
  16. Feinberg, A.P. and Vogelstein, B. 1983. A technique for radiolabelling DNA-restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6–13.Google Scholar
  17. Fritsch, D.A., Harris-Haller, L.W., Yokubaitis, N.T., Thomas, T.L., Hardin, H.L. and Hall, T.C. 1995. Complete sequence of the binary vector Bin19. Plant Mol. Biol. 27: 405–409.Google Scholar
  18. Gheysen, G., Geert, A. and Van Montagu, M. 1998. Agrobacteriummediated plant transformation: a scientifically intriguing story with significant applications. In: K. Lindsey (Ed.), Transgenic Plant Research, Harwood Academic Publishers, Amsterdam, pp. 1–33.Google Scholar
  19. Guerineau, F. and Mullineaux, P. 1993. Plant transformation and expression vectors. In: R.R. Croy (Ed.), Plant Molecular Biology LABFAX, Bios Scientific Publishers, Oxford, pp. 121–147.Google Scholar
  20. Guerineau, F., Woolston, S., Brooks, L. and Mullineaux, P. 1989. An expression cassette for targeting foreign proteins into chloroplasts. Nucl. Acids Res. 16: 11380.Google Scholar
  21. Guerineau, F., Brooks, L., Robinson, C. and Mullineaux, P.M. 1990. Sulfonamide resistance gene for plant transformation. Plant Mol. Biol. 15: 127–136.Google Scholar
  22. Guerineau, F., Lucy, A. and Mullineaux, P. 1992. Effect of two consensus sequences preceding the translation initiator codon on gene expression in plant protoplasts. Plant Mol. Biol. 18: 815–818.Google Scholar
  23. Hamilton, C.M., Frary, A., Lewis, C., and Tanksley, S.D. 1996. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad. Sci. USA 93: 9975–9979.Google Scholar
  24. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557–580.Google Scholar
  25. Haseloff, J., Siemering, K.R., Prasher, D.C. and Hodge, S. 1997. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA 94: 2122–2127.Google Scholar
  26. Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271–282.Google Scholar
  27. Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J. and Schilperoort, R.A. 1983. A binary plant vector strategy based on separation of the vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180.Google Scholar
  28. Hood, E.E., Gelvin, S.B., Melchers, L.S. and Hoekema, A. 1993. New Agrobacterium helper plasmids for gene transfer to plants. Transgen. Res. 2: 208–218.Google Scholar
  29. Horsch, R.B., Fry, J.E., Eicholtz, D., Rodgers, S.G. and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.Google Scholar
  30. Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T. and Kumashiro, T. 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol. 14: 745–750.Google Scholar
  31. Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.Google Scholar
  32. Jones, J.D.G., Shlumukov, L., Carland, F., English, J., Scofield, S.R., Bishop, G.J. and Harrison, K. 1992. Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants. Transgen. Res. 1: 285–297.Google Scholar
  33. Komari, T., Hiei, Y., Saito, Y., Murai, N. and Kumashiro, T. 1996. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10: 165–174.Google Scholar
  34. Lazo, G.R., Stein, P.A., and Ludwig, R.A. 1991. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Bio/technology 9: 963–967.Google Scholar
  35. Lonsdale, D.M., Moisan, L.J. and Harvey, A.J. 1998. The effect of altered codon usage on luciferase activity in tobacco, maize and wheat. Plant Cell Rep. 17: 396–399.Google Scholar
  36. McBride, K.E. and Summerfelt, K.R. 1990. Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 14: 269–276.Google Scholar
  37. McCormac, A.C., Elliott, M.C. and Chen, D.-F. 1997. pBECKS; a flexible series of binary vectors for Agrobacterium-mediated plant transformation. Mol. Biotechnol. 8: 199–213.Google Scholar
  38. Moloney, M.M., Walker, J.A. and Sharma, K.K. 1989. High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep. 8: 238–242.Google Scholar
  39. Mullineaux, P.M., Guerineau, F. and Accotto, G.-P. 1990. Processing of complementary sense RNAs of Digitaria streak virus in its host and in transgenic tobacco. Nucl. Acids Res. 18: 7259–7265.Google Scholar
  40. Murray E. E., Lotzer J. and Eberle M. 1988. Codon usage in plants. Nucl. Acids Res. 17: 477–498.Google Scholar
  41. Nelson M. and McClelland M. 1991. Site-specific methylation: effect on DNA modification methyltransferase and restriction endonuclease. Nucl. Acids Res. 19: 2045–2071.Google Scholar
  42. Norrander, J., Kemp, T., and Messing, J. 1983. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26: 101–106.Google Scholar
  43. Okumura, M.S. and Kado, C.I. 1992. The region essential for effi-cient autonomous replication of pSa in E. coli. Mol. Gen. Genet. 235: 55–63.Google Scholar
  44. Olszewski, N.E., Martin, F.B. and Ausubel, F.M. 1988. Specialized binary vectors for plant transformation: expression of the Arabidopsis thaliana AHAS gene in Nicotiana tabacum. Nucl. Acids Res. 16: 10765–10782.Google Scholar
  45. Ooms, G., Karp, A., Burrell, M.M., Twell, D. and Roberts, J. 1985. Genetic modification of potato development using Ri T-DNA. Theor. Appl. Genet. 70: 440–446.Google Scholar
  46. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  47. Simeons, C., Alliotte, T., Mendel, R., Muller, A., Schiemann, J., Van Lijsebettens, M., Schell, J., Van Montagu, M. and Inzé, D. 1986. A binary vector for transferring genomic libraries to plants. Nucl. Acids Res. 14: 8073–8090.Google Scholar
  48. Shen, W. and Forde, B.J. 1989. Efficient transformation of Agrobacterium spp. by high voltage electroporation. Nucl. Acids Res. 17: 8385.Google Scholar
  49. Sheng, J. and Citovsky, V. 1996. Agrobacterium-plant cell DNA transport: have virulence proteins will travel. Plant Cell 8: 1699–1710.Google Scholar
  50. Slightom, J.L., Jouanin, L., Leach, F., Drong, R.F. and Tepfer, D. 1985. Isolation and identification of TL-DNA/plant junctions in Convolvulus arvensis transformed by Agrobacterium rhizogenes strain A4. EMBO J. 4: 3069–3077.Google Scholar
  51. Stoker, N.G., Fairweather, N.F. and Spratt, B.G. 1982. Versatile lowcopy-number plasmid vectors for cloning in Escherichia coli. Gene 18: 335–341.Google Scholar
  52. Tingay, S., McElroy, D., Kalla, R., Fieg, S., Wang, M., Thornton, S. and Brettell, R. 1997. Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11: 1369–1376.Google Scholar
  53. Valvekens, D., Van Montagu, M. and Van Lijsebettens, M. 1989. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc. Natl. Acad. Sci. USA 85: 5536–5540.Google Scholar
  54. van Haaren, M.J.J., Sedee, N.J.A., Krul, M., Schilperoort, R.A. and Hooykaas, P.J.J. 1988. Function of heterologous and pseudo border repeats in T region transfer via the octopine virulence system of Agrobacterium tumefaciens. Plant Mol. Biol. 11: 773–781.Google Scholar
  55. Waldron, C., Murphy, E.B., Roberts, G.D., Gustafson, S., Armour, L. and Malcolm, S.K. 1985. Resistance to hygromycin B: a new marker for plant transformation studies. Plant Mol. Biol. 5: 103–108.Google Scholar
  56. Yenofsky, R.L., Fine, M. and Pellow, J.W. 1990. A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. Proc. Natl. Acad. Sci. USA 87: 3435–3439.Google Scholar
  57. Zambryski, P., Joos, H., Genetello, H., Leemans, J., Van Montague, M. and Schell, J. 1983. Ti plasmid vectors for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2: 2143–2150.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Roger P. Hellens
    • 1
  • E. Anne Edwards
    • 1
  • Nicola R. Leyland
    • 1
  • Samantha Bean
    • 1
  • Philip M. Mullineaux
    • 1
  1. 1.John Innes CentreNorwichUK

Personalised recommendations