Journal of Neuro-Oncology

, Volume 50, Issue 1–2, pp 1–15 | Cite as

Vasculogenesis and Angiogenesis as Mechanisms of Vascular Network Formation, Growth and Remodeling

  • Sybill Patan


Two distinct mechanisms, vasculogenesis and angiogenesis implement the formation of the vascular network in the embryo. Vasculogenesis gives rise to the heart and the first primitive vascular plexus inside the embryo and in its surrounding membranes, as the yolk sac circulation. Angiogenesis is responsible for the remodeling and expansion of this network. While vasculogenesis refers to in situ differentiation and growth of blood vessels from mesodermal derived hemangioblasts, angiogenesis comprises two different mechanisms: endothelial sprouting and intussusceptive microvascular growth (IMG). The sprouting process is based on endothelial cell migration, proliferation and tube formation. IMG divides existing vessel lumens by formation and insertion of tissue folds and columns of interstitial tissue into the vessel lumen. The latter are termed interstitial or inter-vascular tissue structures (ITSs) and tissue pillars or posts. Intussusception also includes the establishment of new vessels by in situ loop formation in the wall of large veins. The molecular regulation of these distinct mechanisms is discussed in respect to the most important positive regulators, vascular endothelial growth factor (VEGF) and its receptors flk-1 (KDR) and flt-1, the Angiopoietin/tie system and the ephrin-B/EpH-B system. The cellular mechanisms and the molecular regulation of angiogenesis in the pathological state are summarized and the differences of physiological and pathological angiogenesis elaborated.

vasculogenesis angiogenesis intussusceptive microvascular growth VEGF Angiopoietins/tie receptors ephrin-B/EpH-B receptors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Poole TJ, Coffin JD: Vasculogenesis and angiogenesis: Two distinct morphogenetic mechanisms establish embryonic vascular pattern. J Exp Zool 251: 224-231, 1989Google Scholar
  2. 2.
    Coffin JD, Harrison J, Schwartz S, Heimark R: Angioblast differentiation and morphogenesis of the vascular endothelium in the mouse embryo. Dev Biol 148: 51-62, 1991Google Scholar
  3. 3.
    Miquerol L, Gertsenstein M, Harpal K, Rossant J, Nagy A: Multiple developmental roles of VEGF suggested by a LacZ-tagged allele. Dev Biol 212: 307-322, 1999Google Scholar
  4. 4.
    Patan S, Heanni B, Burri PH: Implementation of intussusceptive microvascular growth in the chicken chorioallantoic membrane (CAM): Pillar formation by folding of the capillary wall. Microvasc Res 51: 80-98, 1996Google Scholar
  5. 5.
    Patan S, Haenni B, Burri PH: Implementation of intussusceptive microvascular growth in the chicken chorioallantoic membrane (CAM): Pillar formation by capillary fusion. Microvasc Res 53: 33-52, 1997Google Scholar
  6. 6.
    Patan S: TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc Res 56: 1-21, 1998Google Scholar
  7. 7.
    Risau W: Vasculogenesis, angiogenesis and endothelial cell differentiation during embryonic development. In: Feinberg RN, Sherer GK, Auerbach R (eds) The Development of the Vascular System. Issues Biomed, Karger, Basel vol 14 pp 58-68, 1991Google Scholar
  8. 8.
    Risau W: Mechanisms of angiogenesis. Nature 386: 671-674, 1997Google Scholar
  9. 9.
    His W: Untersuchungen über die erste Anlage des Wirbelthierleibes. Leipzig, 1868Google Scholar
  10. 10.
    Reagan FP: Vascularization phenomena in fragments of embryonic bodies completely isolated from yolk-sac blastoderm. Anat Rec 9: 329-341, 1915Google Scholar
  11. 11.
    Stockard GR: The origin of blood and vascular endothelium in embryos without a circulation of the blood and in the normal embryo. Am J Anat 18: 227-327, 1915Google Scholar
  12. 12.
    Sabin FR: Studies on the origin of blood-vessels and of red blood-corpuscles as seen in the living blastoderm of chicks during the second day of incubation. Contrib Embryol 36: 213-259, 1920Google Scholar
  13. 13.
    Risau W, Flamme I: Vasculogenesis. Annu Rev Cell Dev Biol 11: 73-91, 1995Google Scholar
  14. 14.
    Pardanaud L, Altmann C, Kitos P, Dieterlen-Lièvre F, Buck CA: Vasculogenesis in the early quail blastodisc as studied with a monclonal antibody recognizing endothelial cells. Development 100: 339-349, 1987Google Scholar
  15. 15.
    Pardanaud L, Yassine F, Dieterlen-Lièvre F: Relationship between vasculogenesis, angiogenesis and hematopoiesis during avian ontogeny. Development 105: 473-485, 1989Google Scholar
  16. 16.
    Sabin FR: Origin and development of the primitive vessels of the chick and of the pig. Contrib Embryol Carnegie Inst Publ Wash 6: 61-124, 1917Google Scholar
  17. 17.
    Poole TJ, Coffin D: Morphogenetic mechanisms in avian vascular development. In: Feinberg RN, Sherer GK, Auerbach R (eds) The Development of the Vascular System. Issues Biomed, Karger, Basel vol 14 pp 25-36, 1991Google Scholar
  18. 18.
    Noden DM: The formation of avian embryonic blood vessels. Am Rev Respir Dis 140: 1097-1103, 1989Google Scholar
  19. 19.
    Le Douarin NM: Cell migration in embryos. Cell 38: 353-360, 1984Google Scholar
  20. 20.
    Christ B, Poelmann RE, Mentink MMT, Gittenberger-De Groot AC: Vascular endothelial cells migrate centripetally within the embryonic arteries. Anat Embryol 181: 333-339, 1990Google Scholar
  21. 21.
    Kurz H, Gartner T, Eggli PS, Christ B: First blood vessels in the avian neural tube are formed by a combination of dorsal angioblast immigration and ventral sprouting of endothelial cells. Dev Biol 173: 133-147, 1996Google Scholar
  22. 22.
    Pardanaud L, Luton D, Prigent M, Bourcheix LM, Catala M, Dieterlen-Lièvre F: Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122: 1363-1371, 1996Google Scholar
  23. 23.
    Flamme I: Is extraembryonic angiogensis in the chick embryo controlled by the endoderm? Anat Embryol 180: 259-272, 1989Google Scholar
  24. 24.
    Flamme I, Breier G, Risau W: Vascular endothelial growth factor (VEGF) and VEGF receptor 2 (flk-1) are expressed during vasculogenesis and vascular differentiation in the quail embryo. Dev Biol 169: 699-712, 1995Google Scholar
  25. 25.
    Kremer C, Breier G, Risau W, Plate KH: Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Cancer Res 57: 3852-3859, 1997Google Scholar
  26. 26.
    Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC: Failure of blood-island formation and vasculogenesis in FLk-1-deficient mice. Nature 376: 62-66. 1995Google Scholar
  27. 27.
    Shalaby F, Ho J, Stanford WL, Fischer WD, Schuh AC, Schwartz L, Bernstein A, Rossant JA: Requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89: 981-990, 1997Google Scholar
  28. 28.
    Breier G, Clauss M, Risau W: Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligands suggests a paracrine regulation of murine vascular development. Dev Dyn 204: 228-239, 1995Google Scholar
  29. 29.
    Fong GH, Rossant J, Gertsenstein M, Breitman ML: Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376: 66-70, 1995Google Scholar
  30. 30.
    Ferrara N, Carver Moore K, Chen H, Dowd M, Lu L, O'Shea KS, Powell-Braxton L, Hillan KJ, Moore MMW: Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380: 439-442, 1996Google Scholar
  31. 31.
    Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein L, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A: Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380: 435-439, 1996Google Scholar
  32. 32.
    Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ: Defective hematopoiesis and vasculogenesis in transforming growth-factor-beta1 knockout mice. Development 121: 1845-1854, 1995Google Scholar
  33. 33.
    Oshima M, Oshima H, Taketo MM: TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179: 297-302, 1996Google Scholar
  34. 34.
    Pepper MS: Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8: 21-43, 1997Google Scholar
  35. 35.
    Thompson MA, Ransom DG, Pratt SJ, MacLennan H, Kieran MW, Detrich III HW, Vail B, Huber TL, Paw B, Brownlie AJ, Oates AC, Fritz A, Gates MA, Amores A, Bahary N, Talbot WS, Her H, Beier DR, Postlethwait JH, Zon LI: The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev Biol 197: 248-269, 1998Google Scholar
  36. 36.
    Harris CRS: The Heart and the Vascular System in Ancient Greek Medicine. Clarendon Press, Oxford, 1973Google Scholar
  37. 37.
    Fülleborn F: Beiträge zur Entwicklung der Allantois der Vögel. Inaug Diss, Francke, Berlin, 1895Google Scholar
  38. 38.
    Danchakoff V: The position of the respiratory vascular net in the allantois of the chick. Am J Anat 21: 407-420, 1917Google Scholar
  39. 39.
    Clark ER: Studies on the growth of blood vessels, by observation of living tadpoles and by experiments on chick embryos. Anat Rec 9: 67-68, 1915Google Scholar
  40. 40.
    Clark ER: Studies on the growth of blood-vessels in the tail of the frog larva-by observation and experiment on the living animal. Am J Anat 23: 37-88, 1918Google Scholar
  41. 41.
    Clark ER, Clark EL: Microscopic observations on the growth of blood capillaries in the living mammal. Am J Anat 64: 251-299, 1939Google Scholar
  42. 42.
    Ausprunk D, Folkman J: Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14: 53-65, 1977Google Scholar
  43. 43.
    Gimbrone MA Jr, Cotran RS, Leapman SB, Folkman J: Tumor growth and neovascularization: an experimental model using the rat cornea. J Natl Cancer Inst 52: 413-427, 1974Google Scholar
  44. 44.
    Auerbach R, Kubai L, Knighton D, Folkman J: A simple procedure for long-term cultivation of chicken embryos. Dev Biol 41: 391-394, 1974Google Scholar
  45. 45.
    Langer R, Folkman J: Polymers for the sustained release of proteins and other macromolecules. Nature 263: 797-800, 1976Google Scholar
  46. 46.
    Folkman J, Long DM, Becker FF: Growth and metastasis of tumor organ culture. Cancer 16: 453-467, 1963Google Scholar
  47. 47.
    Folkman J: Tumor angiogenesis: therapeutic implications. N Engl J Med 285: 1182-1186, 1971Google Scholar
  48. 48.
    Folkman J: Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175: 409-416, 1972Google Scholar
  49. 49.
    Folkman J, Haudenschild CC, Zetter B: Long-term culture of capillary endothelial cells. Proc Natl Acad Sci USA 76: 5217-5221, 1979Google Scholar
  50. 50.
    Folkman J, Haudenschild CC: Angiogenesis in vitro. Nature 288: 551-556, 1980Google Scholar
  51. 51.
    Montesano R, Orci L, Vasalli P: In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J Cell Biol 97: 1648-1652, 1983Google Scholar
  52. 52.
    Madri JA, Williams SK: Capillary endothelial cell cultures: phenotypic modulation by matrix components. J Cell Biol 97: 153-165, 1983Google Scholar
  53. 53.
    Shing Y, Folkman J, Murray J, Klagsbrun M: Purification by affinity chromatography on heparin-sepharose of a growth factor that stimulates capillary endothelial cells. J Cell Biol 97: 295a, 1983Google Scholar
  54. 54.
    Shing Y, Folkman J, Sullivan R, Butterfield C, Murray J, Klagsbrun M: Heparin affinity: purification of a tumor derived capillary endothelial cell growth factor. Science 223: 1296-1298, 1984Google Scholar
  55. 55.
    Folkman J: Angiogenesis: initiation and control. Ann N Y Ac Sc 401: 212-227, 1982Google Scholar
  56. 56.
    Folkman J: Tumor angiogenesis. Adv Cancer Res 43: 175-203, 1985Google Scholar
  57. 57.
    Folkman J: Howis blood vessel growth regulated in normal and neoplastic tissue? Cancer Res 46: 467-473, 1986Google Scholar
  58. 58.
    Short RHD: Alveolar epithelium in relation to growth of the lung. Philos Trans R Soc Lond Ser B 235: 35-87, 1950Google Scholar
  59. 59.
    Caduff JH, Fischer LC, Burri PH: Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat Rec 216: 154-164, 1986Google Scholar
  60. 60.
    Burri PH, Tarek MR: A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat Rec 228: 35-45, 1990.Google Scholar
  61. 61.
    Van Groningen JP, Wenink ACG, Testers LHM: Myocardial capillaries: Increase in number by splitting of existing vessels. Anat Embryol 184: 65-70, 1991Google Scholar
  62. 62.
    Patan S, Alvarez MJ, Schittny JC, Burri PH: Intussusceptive microvascular growth: A common alternative to endothelial sprouting. Arch Histol Cytol 55 (Suppl.): 65-75, 1992Google Scholar
  63. 63.
    Patan S, Haenni B, Burri PH: Evidence for intussusceptive capillary growth in the chicken chorio-allantoic membrane (CAM). Anat Embryol 187: 121-130, 1993Google Scholar
  64. 64.
    Patan S, Munn LL, Jain RK: Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: A novel mechanism of tumor angiogenesis. Microvasc Res 51: 260-272, 1996Google Scholar
  65. 65.
    Tardy Y, Resnick N, Nagel T, Gimbrone MA Jr., Dewey CF Jr.: Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler Thromb Vasc Biol 17: 3102-3106, 1997Google Scholar
  66. 66.
    Sumpio BE, Du W, Galagher G, Wang X, Khachigian LM, Collins T, Gimbrone MA Jr., Resnick N: Regulation of PDGF-B in endothelial cells exposed to cyclic strain. Arterioscler Thromb Vasc Biol 18: 349-355, 1998Google Scholar
  67. 67.
    Nagel T, Resnick N, Dewey CF Jr., Gimbrone MA Jr.: Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler Thromb Vasc Biol 19: 1825-1834, 1999Google Scholar
  68. 68.
    Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD: Requisite role of Angiopoietin-1, a ligand for the TIE2 receptor during embryonic angiogenesis. Cell 87: 1171-1180, 1996Google Scholar
  69. 69.
    Ware JA, Simons M: Angiogenesis in ischemic heart disease. Nat Med 3: 158-164, 1997Google Scholar
  70. 70.
    Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radijewski C, Maisonpierre PC, Yancopoulos GD: Isolation of angiopoietin-1, a ligand for the angiogenic TIE2 receptor, by secretion-trap expression cloning. Cell 87: 1161-1169, 1996Google Scholar
  71. 71.
    Wang HU, Chen CF, Anderson DJ: Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93: 741-753, 1998Google Scholar
  72. 72.
    Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R: Roles of ephrin-B ligands and EphB receptors in cardiovascular development: Demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes & Dev 3: 295-306, 1999Google Scholar
  73. 73.
    Keyt BA, Nguyen HV, Berleau LT, Duarte CM, Park J, Chen H, Ferrara N: Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors: Generation of receptor-selective VEGF variants by site-directed mutagenesis. J Biol Chem 271: 5638-5646, 1996Google Scholar
  74. 74.
    Carmeliet P, Ng Y-S, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Ehler E, Kakkar VV, Stalmans I, Mattot V, Perriard J-C, Dewerchin M, Flameng W, Nagy A, Lupu F, Moons L, Collen D, D'Amore PA, Shima DT: Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 5: 495-502, 1999Google Scholar
  75. 75.
    Barleon B, Siemeister G, Martiny-Baron G, Weindel K, Herzog C, Marmè D: Vascular endothelial growth factor up-regulates its receptor fms-like kinase 1 (Flt-1) and a soluble variant of Flt-1 in human vascular endothelial cells. Cancer Res 57: 5421-5425, 1997Google Scholar
  76. 76.
    Dumont DJ, Fong G-H, Puri MC, Gradwohl G, Alitalo K, Breitman ML: Vascularization of the mouse embryo: A study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn 203: 80-92, 1995Google Scholar
  77. 77.
    Partanen J, Armstrong E, Makela TP, Korhonen J, Sandberg M, Renkonen R, Knuutila S, Huebner K, Alitalo K: A novel endothelial surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains. Mol Cell Biol 12: 1698-1707, 1992Google Scholar
  78. 78.
    Iwama A, Hamaguchi I, Hashijama M, Murajama Y, Yasunaga K, Suda T: Molecular cloning and characterization of mouse Tie and Tek receptor tyrosine kinase genes and their expression in hematopoietic stem cells. Biochem Biophys Res Commun 195: 301-309, 1993Google Scholar
  79. 79.
    Maisonpierre PC, Goldfarb M, Yancopoulos GD, Gao G: Distinct rat genes with related profiles of expression define a TIE receptor tyrosine kinase family. Oncogene 8: 1631-1637, 1993Google Scholar
  80. 80.
    Sato TN, Quin Y, Kozak CA, Audus KL: tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc Natl Acad Sci USA 90: 9355-9358, 1993Google Scholar
  81. 81.
    Schnurch H, Risau W: Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development 119: 957-968, 1993Google Scholar
  82. 82.
    Ziegler SF, Bird TA, Schneringer KA, Schooley KA, Baum PR: Molecular cloning and characterization of a novel receptor protein tyrosine kinase from human placenta. Oncogene 8: 663-670, 1993Google Scholar
  83. 83.
    Dumont DJ, Gradwohl G, Fong G-H, Puri MC, Gerstenstein M, Auerbach A, Breitman ML: Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8: 1897-1909, 1994Google Scholar
  84. 84.
    Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Quin Y: Distinct roles of the receptor tyrosine kinases TIE1 and TIE2 in blood vessel formation. Nature 376: 70-74, 1995Google Scholar
  85. 85.
    Puri MC, Rossant J, Alitalo K, Bernstein A, Partanen J: The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J 14: 5884-5891, 1995Google Scholar
  86. 86.
    Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM: Chemotactic properties of angiopoietin-1 and-2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem 273: 18514-18521, 1998Google Scholar
  87. 87.
    Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau W: Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr Biol 8: 529-532, 1998Google Scholar
  88. 88.
    Papapetropoulos A, Garcia-Cardena G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC: Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 79: 213-223, 1999Google Scholar
  89. 89.
    Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon EH, Sato TN, Yancopoulos GD: Increased vascularization in mice overexpressing angiopoietin-1. Science 282: 468-471, 1998Google Scholar
  90. 90.
    Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M, Yancopoulos GD, Isner JM: Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83: 233-240, 1998Google Scholar
  91. 91.
    Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD: Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277: 55-60, 1997Google Scholar
  92. 92.
    Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, Pawson T, Goldfarb M, Yancopoulos GD: Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266: 816-819, 1994Google Scholar
  93. 93.
    Algire GH, Chalkley HW, Legallais FJ, Park HD: Vascular reaction of normal and malignant tumors in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J Natl Cancer Inst 6: 73-85, 1945Google Scholar
  94. 94.
    Greenblatt M, Shubik P: Tumor angiogenesis: Transfilter diffusion studies in the hamster by the transparent chamber technique. J Natl Cancer Inst 41: 111-124, 1968Google Scholar
  95. 95.
    Folkman J, Watson K, Ingber DE, Hanahan D: Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339: 58-61, 1989Google Scholar
  96. 96.
    Good D, Polverini P, Rastinejad F, Beau M, Lemons R, Frazier W, Bouck N: A tumor suppressor-dependent inhibitor of angiogenesis immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 87: 6624-6628, 1990Google Scholar
  97. 97.
    Dipietro LA: Thrombospondin as a regulator of angiogenesis. In: Rosen E, Goldberg ID (eds) Regulation of Angiogenesis. Springer Verlag, Berlin, New York, pp 295-314, 1997Google Scholar
  98. 98.
    O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J: Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315-328, 1994Google Scholar
  99. 99.
    O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J: Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277-285, 1997Google Scholar
  100. 100.
    Pike SE, Yao L, Jones KD, Cherney B, Appella E, Sakaguchi K, Nakhasi H, Teruja-Feldstein J, Wirth P, Gupta G, Tosato G: Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 188: 2349-2356, 1998Google Scholar
  101. 101.
    Rastinejad F, Polverini PJ, Bouck NP: Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56: 345-355, 1989Google Scholar
  102. 102.
    Bouck NP:Tumor angiogenesis: The role of oncogenes and tumor suppressor genes. Cancer Cells 2: 179-185, 1990Google Scholar
  103. 103.
    Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1: 27-31, 1995Google Scholar
  104. 104.
    Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353-364, 1996Google Scholar
  105. 105.
    Jain RK: Determinants of tumor blood flow: A review. Cancer Res 48: 2641-2658, 1988Google Scholar
  106. 106.
    Dvorak HF: Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315: 1650-1659, 1986Google Scholar
  107. 107.
    Nagy JA, Morgan ES, Herzberg KT, Manseau EJ, Dvorak AM, Dvorak HF: Pathogenesis of ascites tumor growth: angiogenesis, vascular remodeling, and stroma formation in the peritoneal lining. Cancer Res 55: 376-385, 1995Google Scholar
  108. 108.
    Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF: Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219: 983-985, 1983Google Scholar
  109. 109.
    Shweiki D, Itin A, Soffer D, Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxiainitiated angiogenesis. Nature 359: 843-845, 1992Google Scholar
  110. 110.
    Kuwabara K, Ogawa S, Matsumoto M, Koga S, Clauss M, Pinsky DJ, Lyn P, Leavy J, Witte L, Joseph-Silverstein T, Stern DM: Hypoxia mediated induction of acidic/basic fibroblast growth factor and platelet derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci USA 92: 4606-4610, 1995Google Scholar
  111. 111.
    Folkman J: Clinical applications of research on angiogenesis. N Engl J Med 333: 1757-1763, 1995Google Scholar
  112. 112.
    Ferrara N: Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Intern 56: 794-814, 1999Google Scholar
  113. 113.
    Dvorak HF, Nagy JA, Feng D, Brown FL, Dvorak AM: Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 237: 97-132, 1999Google Scholar
  114. 114.
    Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N: Inhibition of vascular endothelial growth factorinduced angiogenesis suppresses tumour growth in vivo. Nature 362: 841-844, 1993Google Scholar
  115. 115.
    Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A: Glioblastoma growth inhibited in vivo by a dominantnegative FLK-1 mutant. Nature 367: 576-579, 1994Google Scholar
  116. 116.
    Millauer B, Longhi MP, Plate KH, Shawver LK, Risau W, Ullrich A, Strawn LM: Dominant-negative inhibition of FLK-1 suppresses the growth of many tumor types in vivo. Cancer Res 56: 1615-1620, 1996Google Scholar
  117. 117.
    Kong HL, Hecht D, Song W, Kovesdi I, Hackett NR, Yayon A, Crystal, RG: Regional suppression of tumor growth by in vivo transfer of a cDNA encoding a secreted form of the extracellular matrix domain of flt-1 vascular endothelial growth factor receptor. Hum Gene Ther 9: 823-833, 1998Google Scholar
  118. 118.
    Goldman CK, Kendall RL, Cabrera G, Soroceanu L, Heike Y, Gillespie GY, Siegal GP, Mao X, Bett AJ, Huckle WR, Thomas KA, Curiel DT: Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis and mortality rate. Proc Natl Acad Sci USA 95: 8795-8800, 1998Google Scholar
  119. 119.
    Lin P, Buxton JA, Acheson A, Radziejewski C, Maisonpierre PC, Yancopoulos GD, Channon KM, Hale LP, Dewhirst MW, George SE, Peters KG: Antiangiogenic gene therapy targeting the endotheliumspecific receptor tyrosine kinase Tie2. Proc Natl Acad Sci USA 95: 8829-8834, 1998Google Scholar
  120. 120.
    Siemeister G, Schirner M, Weindel K, Reusch P, Menrad A, Marmè D, Martiny-Baron G: Two independent mechanisms essential for tumor angiogenesis: Inhibition of human melanoma xenograft growth by interfering with either the vascular endothelial growth factor receptor pathway or the Tie-2 pathway. Cancer Res 59: 3185-3191, 1999Google Scholar
  121. 121.
    Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ: Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284: 1994-1998, 1999Google Scholar
  122. 122.
    McCarthy MJ, Crowther M, Bell PRF, Brindle, NPJ: The endothelial receptor tyrosine kinase tie-1 is upregulated by hypoxia and vascular endothelial growth factor. FEBS Letters 423: 334-338, 1998Google Scholar
  123. 123.
    Peters KG, De Vries C, Williams LT: Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc Natl Acad Sci 90: 8915-8919, 1993Google Scholar
  124. 124.
    Korhonen J, Partanen J, Armstrong E, Vaahtokari A, Elenius K, Jaekanen M, Alitalo K: Enhanced expression of the tie receptor tyrosine kinase in endothelial cells during neovascularization. Blood 80: 2548-2555, 1992Google Scholar
  125. 125.
    Banai S, Shweiki D, Pinson A, Chandra M, Lazarovici G, Keshet E: Up-regulation of vascular endothelial growth factor expression induced by myocardial ischemia: implications for coronary angiogenesis. Cardiovasc Res 28: 1176-1179, 1994Google Scholar
  126. 126.
    Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W: Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest 101: 40-50, 1998Google Scholar
  127. 127.
    Li J, Brown LF, Hibberd MG, Grossman JD, Morgan JP, Simons M: VEGF, flk-1, and flt-1 expression in a rat 15 myocardial infarction model of angiogenesis. Am J Physiol 270: H1803-H1811, 1996Google Scholar
  128. 128.
    Shyu KG, Manor O, Magner M, Yancopoulos GD, Isner JM: Direct intramuscular injection of plasmid DNA encoding angiopoietin-1 but not angiopoietin-2 augments revascularization in the rabbit ischemic hindlimb. Circulation 10: 2081-2087, 1998Google Scholar
  129. 129.
    Schumacher B, Pecher P, von Specht BU, Stegmann T: Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 97: 645-650, 1998Google Scholar
  130. 130.
    Baumgartner I, Pieczek A, Manor O, Blair R, Kearney M, Walsh K, Isner JM: Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 97: 1114-1123, 1998Google Scholar
  131. 131.
    Boehm T, Folkman F, Browder T, O'Reilly MS: Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390: 404-407, 1997Google Scholar
  132. 132.
    O'Reilly MS, Pirie-Shepherd S, Lane WS, Folkman J: Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science 285: 1926-1928, 1999Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Sybill Patan
    • 1
  1. 1.Division of Cardiology, Albert Einstein College of MedicineYeshiva University, BronxNew YorkUSA

Personalised recommendations