Plant Molecular Biology

, Volume 43, Issue 4, pp 503–513 | Cite as

Characterisation of complementary DNAs from the expressed sequence tag analysis of life cycle stages of Laminaria digitata (Phaeophyceae)

  • Florent Crépineau
  • Thomas Roscoe
  • Raymond Kaas
  • Bernard Kloareg
  • Catherine Boyen


Laminariales (Phaeophyceae, Heterokonta) are characterised by a heteromorphic digenetic life cycle with a filamentous, microscopic gametophyte and a highly evolved, macroscopic sporophyte. With the ultimate goal of comparing gene expression in each life cycle stage, complementary DNA libraries were constructed from sporophytes and gametophytes of Laminaria digitata. A set of ca. 500 expressed sequence tags (EST) was generated from each life history phase, by single-run partial sequencing of randomly picked cDNA clones. Comparison of the EST deduced amino acid sequences with database protein sequences assigned a putative identity for 39% of the 412 gametophyte clones and 48% of the 493 sporophyte clones sequenced thus far. These data represent more than 152 different proteins now probably identified in L. digitata. Several of those newly identified proteins are of interest to our understanding of the molecular physiology of kelps, for example their carbon-concentrating mechanisms, cell wall biosynthesis and halogen metabolism. EST analysis also confirmed that genes with long 3′-UTRs are widespread in Laminariales and the study of 5′-UTRs allowed the identification of a Kozak consensus sequence, c(A/C)A(A/C)CAUGGc(G/T). Several potential developmentally regulated differences in gene expression are discussed.

ACEDB EST Kozak sequence Laminaria digitata 3′-UTR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M.D., Kerlavage, A.R., Fleischmann, R.D., Fuldner, R.A., Bult, C.I., Lee, N.H., Kirkness, E.F., Weinstock, K.G., Gocayne, I.D., White, O., Sutton, G., Blake, I.A., Brandon, R.C., Chiu, M.W. and Clayton, R.A. 1995. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377: 30–174.Google Scholar
  2. Ajioka, I.W., Boothroyd, I.C., Brunk, B.P., Hehl, A., Hillier, L., Manger, I.D., Marra, M., Overton, G.C., Roos, D.S., Wan, K.L., Waterston, R. and Sibley, L.D. 1998. Gene discovery by EST sequencing in Toxoplasma gondii reveals sequences restricted to the Apicomplexa. Genome Res. 8: 18–28.Google Scholar
  3. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, I., Zhang, Z., Miller, W. and Lipman, D.I. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402.Google Scholar
  4. Apt, K.E., Clendennen, S.K., Powers, D.A. and Grossman, A.R. 1995. The gene family encoding the fucoxanthin chlorophyll proteins from the brown alga Macrocystis pyrifera. Mol. Gen. Genet. 246: 455–464.Google Scholar
  5. Audic, S. and Claverie, I.M. 1997. The significance of digital gene expression profiles. Genome Res. 7: 98–95.Google Scholar
  6. Bailey, T.L. and Elkan, C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: R. Altman, D. Brutlag, P. Karp, R. Lathrop and D. Seals, (Eds) Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, AAAI Press, California, pp. 28–36.Google Scholar
  7. Benet, H., Ar Gall, E., Asensi, A. and Kloareg, B. 1997. Protoplast regeneration from gametophytes and sporophytes of some species in the order Laminariales (Phaeophyceae). Protoplasma 199: 39–48.Google Scholar
  8. Bhattacharya, D. and Medlin, L. 1995. The phylogeny of plastids: a review based on comparisons of small-subunit ribosomal RNA coding regions. J. Phycol. 31: 489–498.Google Scholar
  9. Bhattacharya, D. and Medlin, L. 1998. Algal phylogeny and the origin of land plants. Plant Physiol. 116: 9–15.Google Scholar
  10. Bhattacharya, D., Medlin, L., Wainright, P.O., Ariztia, E.V., Bibeau, C., Stickel, S.K. and Sogin, M.L. 1992. Algae containing chlorophylls a=c are paraphyletic: molecular evolutionary analysis of the Chromophyta. Evolution 46: 1801–1817.Google Scholar
  11. Bidwell, J.P. and Spotte, S. 1985. Artificial Seawaters: Formulas and Methods, Jones and Bartlett, Boston, MA.Google Scholar
  12. Bowler, C., Slooten, L., Vandenbranden, S., de Rycke, R., Botterman, J., Sybesma, C., Van Montagu, M. and Inzé, D. 1991. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J. 10: 1723–1732.Google Scholar
  13. Caron, L., Douady, D., Quinet-Szely, M., de Goer, S. and Berkaloff, C. 1996. Gene structure of a chlorophyll a=c-binding protein from a brown alga: presence of an intron and phylogenetic implications. J. Mol. Evol. 43: 270–280.Google Scholar
  14. Cook, R., Raynal, M., Laudiel, M. and Delseny, M. 1997. Identification of members of gene families in Arabidopsis thaliana by contig construction from partial cDNA sequences: 106 genes encoding 50 cytoplasmic ribosomal proteins. Plant J. 11: 1127–1140.Google Scholar
  15. Decker, C.J. and Parker, R. 1995. Diversity of cytoplasmic functions for the 30-untranslated region of eukaryotic transcripts. Curr. Opin. Cell. Biol. 7: 38–92.Google Scholar
  16. Del Rio, L.A., Sandalio, L.M., Palma, J.M., Bueno, P. and Corpas, F.J. 1992. Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic. Biol. Med. 13: 55–80.Google Scholar
  17. Delseny, M., Cooke, R., Raynal, M. and Grellet, F. 1997. TheArabidopsis thaliana cDNA sequencing projects. FEBS Lett. 405: 129–132.Google Scholar
  18. Deswal, R., Chakaravarty, T.N. and Sopory, S.K. 1993. The glyoxalase system in higher plants: regulation in growth and differentiation. Biochem. Soc. Transact. 21: 527–530.Google Scholar
  19. Green, P., Lipman, D., Hillier, L.D., Waterston, R., States, D. and Claverie, J.M. 1993. Ancient conserved regions in new gene sequences and the protein databases. Science 259: 1711–1716.Google Scholar
  20. Hertz, G.Z., Hartzell, G.W. and Stormo, G.D. 1990. Identification of consensus patterns in unaligned DNA sequences known to be functionally related. Comp. Appl. Biosci. 6: 81–92Google Scholar
  21. Höfte, H., Desprez, T., Amselem, J., Chiapello, H., Rouze, P., Caboche, M., Moisan, A., Jourjon, M.F., Charpenteau, J.L., Berthomieu, P., Guerrier, D., Giraudat, J., Quigley, F., Thomas, F., Yu, D.Y., Mache, R., Raynal, M., Cooke, R., Grellet, F., Delseny, M., Parmentier, Y., De Marcillac, G., Gigot, C., Fleck, J., Phillipps, G., Axelos, M., Bardet, C., Tremousaygue, D. and Lescure, B. 1993. An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNAs from Arabidopsis thaliana. [published erratum in Plant J. 4 (1994) 611.] Plant J. 4: 1051–1061.Google Scholar
  22. Joshi, C.P., Zhou, H., Huang, X. and Chiang, V.L. 1997. Context sequences of translation initiation codon in plants. Plant Mol. Biol. 35: 993–1001.Google Scholar
  23. Kain, J.M. 1979. A view on the genus Laminaria. Oceanogr. Mar. Biol. Annu. Rev. 17: 101–161.Google Scholar
  24. Kawalleck, P., Plesch, G., Hahlbrock, K. and Somssich, I.E. 1992. Induction by fungal elicitor of S-adenosyl-L-methionine synthetase and S-adenosyl-L-homocysteine hydrolase mRNAs in cultured cells and leaves of Petroselinum crispum. Proc. Natl. Acad. Sci. USA 89: 4713–4717.Google Scholar
  25. Kozak, M. 1987. An analysis of 50-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res. 15: 8125–8148.Google Scholar
  26. Küpper, P.C., Schweigert, N., Gall, E.A., Legendre, J.M., Vilter, H. and Kloare, B. 1998. Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide. Planta 207: 163–171.Google Scholar
  27. Kurland, C.G. 1991. Codon bias and gene expression. FEBS Lett. 285: 165–169.Google Scholar
  28. Le Gall, Y., Brown, S., Marie, D., Mejjad, M. and Kloareg, B. 1993. Quantification of nuclear DNA and G-C content in marine macro algae by flow cytometry of isolated nuclei. Protoplasma 173: 123–132.Google Scholar
  29. Leipe, D.D., Tong, S.M., Goggin, C.L., Slemenda, S.B., Pieniazek, N.J. and Sogin, M.L. 1996. 16S-like rRNA sequences from Developayella elegans, Labyrinthuloides haliotidis and Proteromonas lacertae confirm that the stramenophiles are a primarily heterotrophic group. Eur. J. Protistol. 32: 44–58.Google Scholar
  30. Lewis, R.J. 1996. Chromosomes of the brown algae. Phycologia 35: 19–40.Google Scholar
  31. Liu, Q.Y., van der Meer, J.P. and Reith, M.E. 1994. Isolation and characterization of phase-specific complementary DNAs from sporophytes and gametophytes of Porphyra purpurea (Rhodophyta) using substracted complementary DNA libraries. J. Phycol. 30: 513–520.Google Scholar
  32. Love, J., Oliver, I.R. and Trewavas, A.J. 1995. The nucleotide sequence of Macrocystis pyrifera calmodulin cDNA. Plant Physiol. 108: 1748.Google Scholar
  33. Mathé, C., Peresetsky, A., Déhais, P., Van Montagu, M. and Rouzé, P. 1999. Classification of Arabidopsis thaliana gene sequences: clustering of coding sequences into two groups according to codon usage improves gene prediction. J. Mol. Biol. 285: 1977–1991.Google Scholar
  34. Moskovitz, J., Berlett, B.S., Poston, J.M. and Stadtman, E.R. 1999. Methionine sulfoxide reductase in antioxidant defense. Meth. Enzymol. 300: 23–44.Google Scholar
  35. Moulin, P., Crepineau, F., Kloareg, B. and Boyen, C. 1999. Isolation and characterization of six cDNAs involved in carbon metabolism in Laminaria digitata (Phaeophyta). J. Phycol. 35: 1237–1245.Google Scholar
  36. Nelson, M. A., Kang, S., Braun, E.L., Crawford, M.E., Dolan, P.L., Leonard, P.M., Mitchell, J., Armijo, A.M., Bean, L., Blueyes, E., Cushing, T., Errett, A., Fleharty, M., Gorman, M., Judson, K., Miller, R., Ortega, J., Pavlova, I., Perea, J., Todisco, S., Trujillo, R., Valentine, J., Wells, A., Werner-Washburne, M. and Natvig, D.O. 1997. Expressed sequences from conidial, mycelial, and sexual stages of Neurospora crassa. Fungal Genet. Biol. 21: 348–363.Google Scholar
  37. Rothnie, H.M. 1996. Plant mRNA 30-end formation. Plant Mol. Biol. 32: 43–61.Google Scholar
  38. Rounsley, S.D., Glodek, A., Sutton, G., Adams, M.D., Somerville, C.R., Venter, J.C. and Kerlavage, A.R. 1996. The construction of Arabidopsis expressed sequence tag assemblies. A new resource to facilitate gene identification. Plant Physiol. 112; 1177–1183.Google Scholar
  39. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Plainview, NY.Google Scholar
  40. Sauvageau, C. 1916. Sur les gamétophytes de deux Laminaires (L. flexicaulis et L. saccharina). C.R. Acad. Sci. Paris 162: 601–604.Google Scholar
  41. Schmitz, K. 1982. Translocation of organic compounds in Laminariales. In: L.M. Srivastava (Ed.) Synthetic and degradative processes in marine macrophytes Walter de Gruyter, Berlin, pp. 167–182.Google Scholar
  42. Spanakis, E. and Brouty-Boyé, D. 1997. Discrimination of fibroblast subtypes by multivariate analysis of gene expression. Int. J. Cancer 71: 402–409.Google Scholar
  43. Sutton, G.G., White, O., Adams, M.D. and Kerlavage, A.R. 1995. TIGR Assembler: a new tool for assembling large shotgun sequencing projects. Genome Sci. Technol. 1: 9–19.Google Scholar
  44. Uchimiya, H., Kidou, S., Shimazaki, T., Aotsuka, S., Takamatsu, S., Nishi, R., Hashimoto, H., Matsubayashi, Y., Kdou, N., Umeda, M. and Kato, A. 1992. Random sequencing of cDNA libraries reveals a variety of expressed genes in cultured cells of rice (Oryza sativa L.). Plant J. 2: 1005–1009.Google Scholar
  45. Vreeland, V, Waite, J.H. and Epstein, L. 1998. Polyphenols and oxidases in substratum adhesion by marine algae and mussels. J. Phycol. 34: 1–8.Google Scholar
  46. Wever, R., Tromp, M.G.M., Krenn, B.E., Marjani, A. and Vantol, M. 1991. Brominating activity of the seaweed Ascophyllum nodosum: impact on the biosphere. Environ. Sci. Technol. 25: 446–449.Google Scholar
  47. Wolfertstetter, F., Frech, K., Herrmann, G. and Werner, T. 1996. Identification of functional elements in unaligned nucleic acid sequences by a novel tuple search algorithm. Comp. Appl. Biosci. 12: 71–80.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Florent Crépineau
    • 1
  • Thomas Roscoe
    • 2
  • Raymond Kaas
    • 3
  • Bernard Kloareg
    • 1
  • Catherine Boyen
    • 1
  1. 1.Laboratoires Goëmar, Observatoire Océanologique de RoscoffUMR 1931, CNRSRoscoff cedexFrance
  2. 2.Physiologie et Biologie Moléculaire des PlantesCNRS, UMR 5545Perpignan cedexFrance
  3. 3.Physiologie de la Reproduction des MacroalguesIFREMER, Centre de NantesNantes cedex 03France

Personalised recommendations