Experimental & Applied Acarology

, Volume 24, Issue 10–11, pp 831–861 | Cite as

Gall Mite Molecular Phylogeny and its Relationship to the Evolution of Plant Host Specificity

  • B. Fenton
  • A.N.E. Birch
  • G. Malloch
  • P.G. Lanham
  • R.M. Brennan


The phylogenetic relationships of all seven known species of Cecidophyopsis mites (Acari: Eriophyidae) with Ribes hosts have been inferred from ribosomal DNA sequences. This analysis found groups of closely related mites. The five gall-forming species, four of which are monophagous and one which has two hosts, were found in two groups. Another group consisted of the two non gall-forming species, one of which has two hosts, while the other is monophagous. The molecular phylogeny of their known Ribes host plants was calculated using the equivalent ribosomal regions as the mites. The structure of the two trees (mites vs hosts) was clearly different, implying that mite speciation did not closely follow speciation events in the plant hosts. Instead, the three groups of Ribes-infesting Cecidophyopsis mites have derived from a common galling ancestor millions of years ago. Each mite group has recently diversified onto different primary hosts. One group of mites has also lost the galling habit. The results have implications for host range changes and the durability of mite-resistance genes in cultivated Ribes.

Cecidophyopsis co-evolution Eriophyid mites phylogeny Ribes ribosomal DNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amrine, J.W., Duncan, G.H., Jones, A.T., Gordon, S.C. and Roberts, I.M. 1994. Cecidophyopsis mites (Acari: Eriophyidae) on Ribes spp (Grossulariaceae). Int. J. Acarol. 20: 139-168.Google Scholar
  2. Berger, A. 1924. A taxonomic review of currants and gooseberries. N.Y. State Agric. Exp. Sta. Tech Bull. 109.Google Scholar
  3. Black, W.C. 1990. Use of molecular probes to characterise aphid populations, In: Proceedings of the symposium: Aphid-plant interactions: Populations to molecules, D.C. Peters, J.A. Webster, C. S. Chlouber, (eds), pp. 137-151 USDA, Stillwater, OK, USA.Google Scholar
  4. Boczek, S. and Shevchenko, V.G. 1996. Ancient associations: Eriophyoid Mites on Gymnosperms, In: World Crop Pests: Eriophyoid Mites, E.E. Lindquist, M.W. Sabelis, J. Bruin (eds), pp. 217-225 Elsevier, Amsterdam.Google Scholar
  5. Brennan, R. 1996. Currants and Gooseberries, In: Fruit Breeding Vol II. Ribes and Small Fruits J. Janick and J.N. Moore (eds) pp. 191-295 J. Wiley, NY.Google Scholar
  6. Bullini, L. 1994. Origin and evolution of animal hybrid species. TREE 9: 422-426.Google Scholar
  7. Campbell, B.C., Steffen-Campbell, J.D. and Werren, J.H. 1993. Phylogeny of the Nasonia species complex (Hymenoptera: Pteromalidae) inferred from an internal transcribed spacer (ITS2) and 28S rDNA sequences. Insect Mol. Biol. 2: 225-237.PubMedGoogle Scholar
  8. Carbone, I. and Kohn, L.M. 1993. Ribosomal DNA sequence divergence within internal transcribed spacer 1 of the Sclerotiniaceae. Mycologia 85: 415-427.Google Scholar
  9. Collinge, W.E. 1907. A new gooseberry pest. Gardener's Chronicle 41: 177.Google Scholar
  10. Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia University Press, New York.Google Scholar
  11. Darrah, W.C., 1939. Textbook of Paleobotany. Appleton-Century, New York.Google Scholar
  12. Easterbrook, M.A. 1980. The host range of a 'non gall-forming' eriophyid mite living in buds on Ribes. J. Hort. Sci. 55: 1-6.Google Scholar
  13. Feder, J.L, Chilcote, C.A., Bush G.L. 1990. Regional, local and microgeographic allele frequency variation between apple and hawthorn populations of Rhagoletis pomonella in Western Michigan. Evolution 44: 595-608.Google Scholar
  14. Felsenstein, J. 1995. PHYLIP Phylogenetics Inference Package, version 3.57c.Google Scholar
  15. Felsenstein, J. and Churchill, G.A. 1996. A hiddenMarkov model approach to variation among sites in rate of evolution. Mol. Biol. Evol. 13: 93-104.PubMedGoogle Scholar
  16. Fenton, B., Birch, A.N.E., Malloch, G., Woodford, J.A.T.W. and Gonzalez, C. 1994. Molecular analysis of ribosomal DNA from the aphid Amphorophora idaei and an associated fungal organism. Insect Mol. Biol. 3: 183-189.PubMedGoogle Scholar
  17. Fenton, B., Malloch, G., Jones, A.T. and Thomas, W. 1996. Molecular ecology of some Cecidophyopsis mites (Acari: Eriophyidae) on Ribes species and evidence for their natural cross colonisation of blackcurrant (R. nigrum). Ann. Appl. Biol. 128: 405-414.Google Scholar
  18. Fenton, B. Malloch, G.M. and Moxey, E. 1997. Analysis of Eriophyid mite rDNA Internal Transcribed Spacer sequences reveals multiple simple sequence repeats. Insect Mol. Biol. 6: 23-32.PubMedGoogle Scholar
  19. Fenton, B., Malloch, G. and Germa, F. 1998. A study of variation in rDNA ITS regions shows that two haplotypes coexist within a single aphid genome. Genome 41: 337-345.PubMedGoogle Scholar
  20. Ferris, V.R., Ferris, J.M. and Faghihi, J. 1993. Variation in spacer ribosomal DNA in some cyst-forming species of plant parasitic nematodes. Fundam. Appl. Nematol. 16: 177-184.Google Scholar
  21. Francisco-Ortega, J., Santos-Guerra, A., Hines, A. and Jansen, R.K. 1997. Molecular evidence for a mediterranean origin of the Macronesian endemic genus Argyranthemum (Asteraceae). Am. J. Bot. 84: 1595-1613.Google Scholar
  22. Gelly, L., Yong-Mng, Y., Kupfer, P. and Taberlet, P. 1996. Phylogenetic use of noncoding regions in the genus Gentiana L.: Chloroplast trnL (UAA) intron versus nuclear ribosmomal internal transcribed spacer sequences. Mol. Phyl. Evol. 5: 460-466.Google Scholar
  23. Hedrick, U.P. 1925. The small fruits of New York. Rep. N.Y. State Agric. Exp. Stn. 33: 243-354.Google Scholar
  24. Higgins, D.G. and Sharp, P.M. 1988. CLUSTAL: a package for performing multiple sequence alignments on a microcomputer. Gene 73: 237-244.CrossRefPubMedGoogle Scholar
  25. Hillis, D.M. and Dixon, M.T. 1991. Ribosomal DNA: Molecular evolution and phylogenetic interference. Quart. Rev. Biol. 66: 411-429.PubMedGoogle Scholar
  26. Hsiao, C., Chatterton, N.J., Asay, K.H. and Jensen, K.B. 1994. Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots. Genome 37: 112-120.PubMedGoogle Scholar
  27. Hugall, A., Stanton, J. and Moritz, C. 1999. Reticulate evolution and the origins of ribosomal internal transcribed spacer diversity in apomictic Meloidogyne. Mol. Biol. Evol. 16: 157-164.PubMedGoogle Scholar
  28. Hummer, K.E., Postman, J.D., Carter, J. and Gordon, S.C. 1999. Survey of gooseberry mite infestation in Ribes L. Hort. Sci. 34: 678-680.Google Scholar
  29. Janczewski, E. 1962. Monograph of the currants Ribes L. Mem. Soc. Phys. of Hist. Nat. de Geneve 35: 199-517.Google Scholar
  30. Jeppson, L.R., Keifer, H.H. and Baker, E.W. 1975. Mites injurious to economic plants. University of California Press, Berkeley, USA.Google Scholar
  31. Keep, E. 1962. Interspecific hybridisation in Ribes. Genetica 33: 1-23.PubMedGoogle Scholar
  32. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.PubMedGoogle Scholar
  33. Kishino, H. and Hasegawa, M. 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J. Mol. Evol. 29: 170-179.PubMedGoogle Scholar
  34. Knight, R.L., Keep, E., Briggs, J.B. and Parker, J.H. 1974. Transference of resistance to blackcurrant gall mite, Cecidophyopsis ribis, from gooseberry to blackcurrant. Ann. Appl. Biol. 76: 123-130.Google Scholar
  35. Kumar, L., Fenton, B. and Jones, A.T. 1999. Identification of Cecidophyopsis mites (Acari: Eriophyidae) based on variable simple sequence repeats of ribosomal DNA internal transcribed spacer-1 sequences via multiplex PCR. Insect Mol. Biol. 8: 347-357.PubMedGoogle Scholar
  36. Lindquist, E.E. and Oldfield, G.N. 1996. Evolution of Eriophyoid mites in relation to their host plants, In: World Crop Pests: Eriophyoid Mites, E.E. Lindquist, M.W. Sabelis, J. Bruin (eds), pp. 277-300 Elsevier, Amsterdam.Google Scholar
  37. Messinger, W., Liston, A. and Hummer, K. 1993. Restriction site mapping of Ribes (Grossulariaceae) nuclear ribosomal DNA. Acta Hort. 352: 175-184.Google Scholar
  38. Messinger, W., Hummer, K. and Liston, A. 1999. Ribes (Grossulariaceae) phylogeny as indicated by restriction-site polymorphism of PCR-amplified chloroplast DNA. Plant Syst. Evol. 217: 185-195.Google Scholar
  39. Milligan, B.G. 1992. Plant DNA isolation. in Molecular genetics of populations: A practical approach, A.R. Hoelzel (ed), pp. 59-88 IRL Press, Oxford, UK.Google Scholar
  40. Moran, N.A. 1989. A 48 million year aphid-host plant association and complex life cycle: Biogeographic evidence. Science 245: 173-175.Google Scholar
  41. Oldfield, G.N., Creamer, R., Gispert, C., Osorio, F., Rodriguez, T. and Perring, T.M. 1995. Incidence and distribution of peach mosaic and its vector, Eriophyes insidiosus (Acari: Eriophyidae) in Mexico. Plant Disease 79: 186-189.Google Scholar
  42. Paskewitz, S.M., Wesson, D.M. and Collins, F.H. 1993. The internal transcribed spacers of ribosomal DNA in five members of the Anopheles gambiae species complex. Insect Mol. Biol. 2: 247-257.PubMedGoogle Scholar
  43. Rehder, A. 1954. Manual of cultivated trees and shrubs. MacMillan and Co.Google Scholar
  44. Schlotterer, C., Hauser, M-T., Haeseler, A. and Tautz, D. 1994. Comparative evolutionary analysis of rDNA ITS regions in Drosophila. Mol. Biol. Evol. 11: 513-522.PubMedGoogle Scholar
  45. Sinnott, Q.P. 1985. A revision of Ribes L. subgenus Grossularia (Mill.) part section Grossularia (Mill.) Nutt. (Grossulariaceae) in North America. Rhodora 87: 189-286.Google Scholar
  46. Strimmer, K. and Von Haeseler, A. 1996. Quartet puzzling a quartet maximum likelihood method for reconstructing tree topologies. Mol. Biol. Evol. 13: 964-969.Google Scholar
  47. Suh, Y., Thein, L.B., Reeve, H.E. and Zimmer, E.A. 1993. Molecular evolution and phylogenetic implications of internal transcribes spacer sequences of ribosomal DNA in Winteraceae. Am. J. Bot. 80: 1042-1055.Google Scholar
  48. Tabashnick, B.E. 1989. The shift from native legume hosts to alfalfa by the butterfly Colias philodice eriphyle. Evolution 33: 897-913.Google Scholar
  49. Thomas, C.D.N.G.M., Singer, M.C., Mallet, J.L.B., Parmesan, C. and Billington, H.L. 1987. Incorporation of a European weed into the diet of a North American herbivore. Evolution 41: 892-901.Google Scholar
  50. Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionsspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.PubMedGoogle Scholar
  51. Thompson, J.N. 1994. The coevolutionary process. The University of Chicago Press, Chicago, pp. 17-22.Google Scholar
  52. Vogler, A.P. and DeSalle, R. 1994. Evolution and phylogenetic information content of the ITS-1 region in the Tiger Beetle Cicindela dorsalis. Mol. Biol. Evol. 11: 393-405.PubMedGoogle Scholar
  53. Wesson, D.M., McLain, D.K., Oliver, J.H., Piesman, J. and Collins, F.H. 1993. Investigation of the validity of species status of Ixodes dammini (Acari: Ixodidae) using rDNA. Proc. Natl. Acad. Sci. USA, 90: 10221-10225.PubMedGoogle Scholar
  54. Westphal, E. and Manson, D.C.M. 1996. Feeding effects on host plants: Gall formation and other distortions, In: World Crop Pests: Eriophyoid Mites, E. E. Lindquist, M. W. Sabelis, J. Bruin (eds), pp. 231-242 Elsevier, Amsterdam.Google Scholar
  55. Westwood, J.O. 1869. Blackcurrant mite. Gardener's Chronicle 32: 1016.Google Scholar
  56. Zambino, P. and Szabo, L.J. 1993. Phylogenetic relationships of selected cereal and grass rusts based on rDNA sequence analysis. Mycologia 85: 401-414.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • B. Fenton
    • 1
  • A.N.E. Birch
    • 2
  • G. Malloch
    • 2
  • P.G. Lanham
    • 2
  • R.M. Brennan
    • 2
  1. 1.Scottish Crop Reasearch Institute, InvergowrieDundee, TaysideScotland, United Kingdom
  2. 2.Scottish Crop Reasearch Institute, InvergowrieDundee, TaysideScotland ,United Kingdom

Personalised recommendations