Plant Molecular Biology

, Volume 44, Issue 1, pp 27–42 | Cite as

Rice PHYC gene: structure, expression, map position and evolution

  • Debabrata Basu
  • Katayoon Dehesh
  • Hans-Joerg Schneider-Poetsch
  • Sandra E. Harrington
  • Susan R. McCouch
  • Peter H. Quail


Although sequences representing members of the phytochrome (phy) family of photoreceptors have been reported in numerous species across the phylogenetic spectrum, relatively few phytochrome genes (PHY) have been fully characterized. Using rice, we have cloned and characterized the first PHYC gene from a monocot. Comparison of genomic and cDNA PHYC sequences shows that the rice PHYC gene contains three introns in the protein-coding region typical of most angiosperm PHY genes, in contrast to Arabidopsis PHYC, which lacks the third intron. Mapping of the transcription start site and 5′-untranslated region of the rice PHYC transcript indicates that it contains an unusually long, intronless, 5′-untranslated leader sequence of 715 bp. PHYC mRNA levels are relatively low compared to PHYA and PHYB mRNAs in rice seedlings, and are similar in dark- and light-treated seedlings, suggesting relatively low constitutive expression. Genomic mapping shows that the PHYA, PHYB, and PHYC genes are all located on chromosome 3 of rice, in synteny with these genes in linkage group C (sometimes referred to as linkage group A) of sorghum. Phylogenetic analysis indicates that rice phyC is closely related to sorghum phyC, but relatively strongly divergent from Arabidopsis phyC, the only full-length dicot phyC sequence available.

gene structure genomic mapping phylogeny phytochrome genes rice transcription start site 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, E., Deak, M., Kay, S., Chua, N.H. and Nagy, F. 1993. Sequence of a tobacco (Nicotiana tabacum) gene coding for type A phytochrome. Plant Physiol. 101: 1407–1408.Google Scholar
  2. Adam, E., Kozma-Bognar, L., Dallmann, G. and Nagy, F. 1995. Transcription of tobacco phytochrome-A genes initiates at multiple start sites and requires multiple cis-acting regulatory elements. Plant Mol. Biol. 29: 983–993.Google Scholar
  3. Adam, E., Kozma-Bognar, L., Schäfer, E. and Nagy, F. 1997. Tobacco phytochromes: genes, structure and expression. Plant Cell Environ. 20: 678–684.Google Scholar
  4. Ahn, S.N. and Tanksley, S.D. 1993. Comparative linkage maps of the rice and maize genomes. Proc. Natl. Acad. Sci. USA 90: 7980–7984.Google Scholar
  5. Austin, D.F. and Lee, M. 1996a. Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor. Appl. Genet. 92: 817–826.Google Scholar
  6. Austin, D.F. and Lee, M. 1996b. Genetic resolution and verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize. Genome 39: 957–968.Google Scholar
  7. Causse, M., Fulton, T.M., Cho, Y.G., Ahn, S.N., Chunwongse, J., Wu, K., Xiao, J., Yu, Z., Ronald, P.C., Harrington, S.E., Second, G.A., McCouch, S.R. and Tanksley, S.D. 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138: 1251–1274.Google Scholar
  8. Chao, S., Baysdorfer, C., Heredia-Diaz, O., Musket, T., Xu, G. and Coe, E.H. 1994. RFLP mapping of partially sequenced leaf cDNA clones in maize. Theor. Appl. genet. 88: 717–721.Google Scholar
  9. Childs, K.L., Miller, F.R., Cordonnier-Pratt, M.-M., Pratt, L.H., Morgan, P.W. and Mullet, J.E. 1997. The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol. 113: 611–619.Google Scholar
  10. Christensen, A.H. and Quail, P.H. 1989. Structure and expression of a maize phytochrome-encoding gene. Gene 85: 381–390.Google Scholar
  11. Church, G.M. and Gilbert, W. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81: 1991–1995.Google Scholar
  12. Clapham, D.H., Kolukisaoglu, H.Ñ., Larsson, C.-T., Qamaruddin, M., Ekberg, I., Wiegmann-Eirund, C., Schneider-Poetsch, H.A.W. and von Arnold, S. 1999. Phytochrome types in Picea and Pinus. Expression patterns of PHYA-related types. Plant Mol. Biol. 40: 669–678.Google Scholar
  13. Cowl, J.S., Hartley, N., Xie, D.-X., Whitelam, G.C., Murphy, G.P. and Harberd, N.P. 1994. The PHYC gene of Arabidopsis. Absence of the third intron found in PHYA and PHYB. Plant Physiol. 106: 813–814.Google Scholar
  14. Davison, A.J. and Moss, B. 1989. Structure of vaccinia virus early promoters. J. Mol. Biol. 210: 749–769.Google Scholar
  15. Dehesh, K., Franci, C., Sharrock, R.A., Somers, D.E., Welsch, J.A. and Quail, P.H. 1994. The Arabidopsis phytochrome A gene has multiple transcription start sites and a promoter sequence motif homologous to the repressor element of monocot phytochrome A genes. Photochem. Photobiol. 59: 379–384.Google Scholar
  16. Dehesh, K., Tepperman, J., Christensen, A.H. and Quail, P.H. 1991. phyB is evolutionarily conserved and constitutively expressed in rice-seedling shoots. Mol. Gen. Genet. 225: 305–313.Google Scholar
  17. Devlin, P.F., Patel, S.R. and Whitelam, G.C. 1998. Phytochrome E influences internode elongation and flowering time in Arabidopsis. Plant Cell 10: 1479–1487.Google Scholar
  18. Devlin, P.F., Rood, S.B., Somers, D.E., Quail, P.H. and Whitelam, G.C. 1992. Photophysiology of the elongated internode (ein) mutant of Brassica rapa: the ein mutant lacks a detectable phytochrome B-like polypeptide. Plant Physiol. 100: 1442–1447.Google Scholar
  19. Geballe, A.P. 1996. Translational control mediated by upstream AUG codons. In: J.W.B. Hershey, M.B. Mathews and N. Sonenberg (Eds.) Translational Control, Cold Spring Harbor Laboratory Press, Plainview, NY, p. 173.Google Scholar
  20. Goosey, L., Palecanda, L. and Sharrock, R.A. 1997. Differential patterns of expression of the Arabidopsis PHYB, PHYD, and PHYE phytochrome genes. Plant Physiol. 115: 959–969.Google Scholar
  21. Halliday, K.J., Thomas, B. and Whitelam, G.C. 1997. Expression of heterologous phytochromes A, B, or C in transgenic tobacco plants alters vegetative development and flowering time. Plant J. 12: 1079–1090.Google Scholar
  22. Hanelt, S., Braun, B., Marx, S. and Schneider-Poetsch, H. 1992. Phytochrome evolution: a phylogentic tree with the first complete sequence of phytochrome A of a cryptogamic plant (Selaginella martensii Spring). Photochem. Photobiol. 56: 751–758.Google Scholar
  23. Hershey, H.P., Barker, R.F., Idler, K.B., Lissemore, J.L. and Quail, P.H. 1985. Analysis of cloned cDNA and genomic sequences for phytochrome: complete amino acid sequence for two gene products expressed in etiolated Avena. Nucl. Acids Res. 13: 8543–8559.Google Scholar
  24. Hershey, H.P., Barker, R.F., Idler, K.B., Murray, M.G. and Quail, P.H. 1987. Nucleotide sequence and characterization of a gene encoding the phytochrome polypeptide from Avena. Gene 61: 339–348.Google Scholar
  25. Heun, M., Kennedy, A.E., Anderson, J.A., Lapitan, N.L.V., Sorrells, M. et al. 1991. Construction of restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome 34: 437–447.Google Scholar
  26. Heyer, A. and Gatz, C. 1992a. Isolation and characterization of a cDNA-clone coding for potato type A phytochrome. Plant Mol. Biol. 18: 535–544.Google Scholar
  27. Heyer, A. and Gatz, C. 1992b. Isolation and characterization of a cDNA-clone coding for potato type B phytochrome. Plant Mol. Biol. 20: 589–600.Google Scholar
  28. Hughes, J., Lamparter, T. and Mittmann, F. 1996. CpPHY2 (PHYCER2), a ‘normal’ phytochrome in Ceratodon. Plant Physiol. 112: 446.Google Scholar
  29. Kaneko, T., Matsubayashi, T., Sugita, M. and Suguira, M. 1996. Physical and gene maps of the unicellular cyanobacterium Synechococcus sp. strain PCC6301 genome. Plant Mol. Biol. 31: 193–201.Google Scholar
  30. Kay, S.A., Keith, B., Shinozaki, K., Chye, M.-L. and Chua, N.-H. 1989a. The rice phytochrome gene: structure, autoregulated expression, and binding of GT-1 to a conserved site in the 5′ upstream region. Plant Cell 1: 351–360.Google Scholar
  31. Kay, S.A., Keith, B., Shinozaki, K. and Chua, N.-H. 1989b. The sequence of the rice phytochrome gene. Nucl. Acids Res. 17: 2865–2866.Google Scholar
  32. Kendrick, R.E., Kerchoffs, L.H.J., van Tuinen, A. and Koornneef, M. 1997. Photomorphogenic mutants of tomato. Plant Cell Environ. 20: 746–751.Google Scholar
  33. Kendrick, R.E. and Kronenberg, G.H.M. 1994. Photomorphogenesis in Plants, 2nd ed., Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
  34. Kosambi, D.D. 1944. The estimation of map distances from recombination values. Ann. Genet. 12: 172–175.Google Scholar
  35. Lagarias, D.M., Wu, S.-H., Lagarias, J.C. 1995. Atypical phytochrome gene structure in the green alga Mesotaenium caldariorum. Plant Mol. Biol. 29: 1127–1142.Google Scholar
  36. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M., Lincoln, S.E. and Newburg, L. 1987. MAPMAKER: an interactive computer package for maps of experimental and natural populations. Genomics 1: 174–181.Google Scholar
  37. Lazarova, G.I., Kerckhoffs, L.H.J., Brandstädter, J., Matsui, M., Kendrick, R.E., Cordonnier-Pratt, M.-M. and Pratt, L.H. 1998a. Molecular analysis of a PHYA in wild-type and phytochrome Adeficient mutants of tomato. Plant J. 14: 653–662.Google Scholar
  38. Lazarova, G.I., Kubota, T., Frances, S., Peters, J.L., Hughes, M.J.G., Brandstädter, J., Széll, M., Matsui, M., Kendrick, R.E., Cordonnier-Pratt, M.-M. and Pratt, L.H. 1998b. Characterization of tomato PHYB1 and identification of molecular defects in four mutant alleles. Plant Mol. Biol. 38: 1137–1146.Google Scholar
  39. Ló pez-Juez, E., Nagatani, A., Tomizawa, K.-I., Deak, M., Kern, R., Kendrick, R.E. and Furuya, M. 1992. The cucumber long hypocotyl mutant lacks a light-stable phyB-like phytochrome. Plant Cell 4: 241–251.Google Scholar
  40. Mathews, S. and Sharrock, R.A. 1996. The phytochrome gene family in grasses (Poaceae): a phylogeny and evidence that grasses have a subset of the loci found in dicot angiosperms. Mol. Biol. Evol. 13: 1141–1150.Google Scholar
  41. Mathews, S. and Sharrock, R.A. 1997. Phytochrome gene diversity. Plant Cell Environ. 20: 666–671.Google Scholar
  42. Mathews, S., Lavin, M. and Sharrock, R.A. 1995. Evolution of the phytochrome gene family and its utility for phylogenetic analyses of angiosperms. Ann. Miss. Bot. Garden 82: 296–321.Google Scholar
  43. Matz, M., Shagin, D., Bogdanova, E., Britanova, O., Lukyanov, S., Diatchenko, L. and Chenchik, A. 1999. Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucl. Acids Res. 27: 1558–1560.Google Scholar
  44. Maucher, P.H. 1994. Molekularbiologie der Phytochrome des Farns Anemia phyllitidis (L.) SW. Thesis, University of Ulm, Ulm, Germany.Google Scholar
  45. McCouch, S.R., Kochert, G., Yu, Z.H., Wang, Y.Z., Khush, G.S., Coffman, R. and Tanksley, S.D. 1988. Molecular mapping of rice chromosomes. Theor. Appl. Genet. 76: 815–829.Google Scholar
  46. Ming, R., Liu, S.-C., Lin, Y.-R., da Silva, J., Wilson, W., Braga, D., van Deyzne, A., Wenslaff, T.F., Wu, K.K., Moore, P.H., Burnquist, W., Sorrells, M.E., Irvine, J.E. and Paterson, A.H. 1998. Detailed alignment of saccharum and sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150: 1663–1682.Google Scholar
  47. O'Donoughue, L.S., Wang, Z., Roder, M., Kneen, B., Legget, M. et al. 1992. An RFLP-based map of oats on a cross between two diploid taxa (Avena atlantica x A. hirtula). Genome 35: 765–771.Google Scholar
  48. Oh, S.-K., Scott, M.P. and Sarnow, P. 1992. Homeotic gene Antennapedia mRNA contains 5′-noncoding sequences that confer translational initiation by internal ribosome binding. Genes Dev. 6: 1643–1653.Google Scholar
  49. Paterson, A.H., Lin, Y.-R., Li, Z., Schertz, K.F., Doebley, J.F., Pinson, S.R.M., Liu, S.-C., Stansel, J.W. and Irvine, J.E. 1995. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269: 1714–1717.Google Scholar
  50. Pereira, M.G., Lee, M., Bramel-Cox, P., Woodman, W., Doebley, J. and Whitkus, R. 1994. Construction of an RFLP map in sorghum and comparative mapping in maize. Genome 37: 236–243.Google Scholar
  51. Pratt, L.H., Cordonnier-Pratt, M.-M., Kelmenson, P.M., Lazarova, G.I., Kubota, T. and Alba, R.M. 1997. The phytochrome gene family in tomato (Solanum lycopersicum L.). Plant Cell Environ. 20: 672–677.Google Scholar
  52. Qin, M., Kuhn, R. and Quail, P.H. 1997. Overexpressed phytochrome C has similar photosensory specificity to phytochrome B but a distinctive capacity to enhance primary leaf expansion. Plant J. 12: 1163–1172.Google Scholar
  53. Quail, P.H. 1994a. Photosensory perception and signal transduction in plants. Curr. Opin. Genet. Dev. 4: 652–661.Google Scholar
  54. Quail, P.H. 1994b. Phytochrome genes and their expression. In: R.E. Kendrick and G.H.M. Kronenberg (Eds.) Photomorphogenesis in Plants, 2nd ed., Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 71–104.Google Scholar
  55. Quail, P.H. 1997a. An emerging molecular map of the phytochromes. Plant Cell Environ. 20: 657–665.Google Scholar
  56. Quail, P.H. 1997b. The phytochromes: a biochemical mechanism of signaling in site? BioEssays 19: 571–579.Google Scholar
  57. Quail, P.H., Boylan, M.T., Parks, B.M., Short, T.W., Xu, Y. and Wagner, D. 1995. Phytochromes: photosensory perception and signal transduction. Science 268: 675–680.Google Scholar
  58. Reed, J.W., Nagpal, P., Poole, D.S., Furuya, M. and Chory, J. 1993. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5: 147–157.Google Scholar
  59. Sato, N. 1988. Nucleotide sequence and expression of the phytochrome gene in Pisum sativum: differential regulation by light of multiple transcripts. Plant Mol. Biol. 11: 697–710.Google Scholar
  60. Schneider-Poetsch, H.A.W., Kolukisaoglu, Ñ., Clapham, D.H., Hughes, J. and Lamparter, T. 1998. Non-angiosperm phytochromes and the evolution of vascular plants. Physiol. Plant. 102: 612–622.Google Scholar
  61. Schwer, B., Mao, X. and Shuman, S. 1998. Accelerated mRNA decay in conditional mutants of yeast mRNA capping enzyme. Nucl. Acids Res. 26: 2050–2057.Google Scholar
  62. Senior, M.L., Chin, E.C.L., Lee, M., Smith, J.S.C. and Stuber, C.W. 1996. Simple sequence repeat markers developed from maize sequences found in the GenBank database: map construction. Crop Sci. 36: 1676–1683.Google Scholar
  63. Sharrock, R.A. and Quail, P.H. 1989. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev. 3: 1745–1757.Google Scholar
  64. Shen, B., Carneiro, N., Torres-Jerez, I., Stevenson, B., McCreery, T., Helentjaris, T., Baysdorfer, C., Almira, E., Ferl, R.J., Habben, J. and Larkins, B.A. 1994. Partial sequencing and mapping of clones from two maize cDNA libraries. Plant Mol. Biol. 26: 1085–1101.Google Scholar
  65. Shima, D.T., Kuroki, M., Deutsch, U., Ng, Y.-S., Adamis, A.P. and D'Amore, P.A. 1996. The mouse gene for vascular endothelial growth factor. J. Biol. Chem. 271: 3877–3883.Google Scholar
  66. Singh, K., Ishii, T., Parco, A., Huang, N., Brara, D.S. and Khush, G.S. 1996. Centromere mapping and orientation of the molecular linkage map of rice (Oryza sativa L.). Proc. Natl. Acad. Sci. USA 93: 6163–6168.Google Scholar
  67. Somers, D.E. and Quail, P.H. 1995. Temporal and spatial expression patterns of PHYA and PHYB genes in Arabidopsis. Plant J. 7: 413–427.Google Scholar
  68. Tahir, M., Kanegae, H. and Takano, M. 1998. PHYC (Phytochrome C) gene in rice: isolation and characterization of a complete coding sequence. Plant Physiol. 118: 1535.Google Scholar
  69. Wada, M., Kanegae, T., Nozue, K. and Fukuda, S. 1997. Cryptogram phytochromes. Plant Cell Environ. 20: 685–690.Google Scholar
  70. Whitelam, G.C. and Devlin, P.F. 1997. Roles of different phytochromes in Arabidopsis photomorphogenesis. Plant Cell Environ. 20: 752–758.Google Scholar
  71. Wilson, W.A., Harrington, S.E., Woodman, W.L., Lee, M., Sorrells, M.E. and McCouch, S.R. 1999. Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize, and the domesticated panicoids. Genetics 153: 453–473.Google Scholar
  72. Wu, S.-H. and Lagarias, J.C. 1997. The phytochrome photoreceptor in the green alga Mesotaenium caldariorum: implication for a conserved mechanism of phytochrome action. Plant Cell Environ. 20: 691–699.Google Scholar
  73. Yeh, K.-C. and Lagarias, J.C. 1998. Eukaryotic phytochromes: light-regulated serine/theonine protein kinases with histidine kinase ancestry. Proc. Natl. Acad. Sci. USA 95: 13976–13981.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Debabrata Basu
    • 1
  • Katayoon Dehesh
    • 1
  • Hans-Joerg Schneider-Poetsch
    • 2
  • Sandra E. Harrington
    • 3
  • Susan R. McCouch
    • 3
  • Peter H. Quail
    • 1
  1. 1.Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Botanisches InstitutUniversität KölnKölnGermany
  3. 3.Plant Breeding DepartmentCornell UniversityIthacaUSA

Personalised recommendations