Journal of Neuro-Oncology

, Volume 50, Issue 1–2, pp 149–163

Anti-angiogenic Treatment Strategies for Malignant Brain Tumors

  • Matthias Kirsch
  • Gabriele Schackert
  • Peter McL. Black
Article
  • 78 Downloads

Abstract

The use of angiogenesis inhibitors may offer novel strategies in brain tumor therapy. In contrast to traditional cancer treatments that attack tumor cells directly, angiogenesis inhibitors target at the formation of tumor-feeding blood vessels that provide continuous supply of nutrients and oxygen.

With respect to brain tumor therapy, inhibitors of angiogenesis display unique features that are unknown to conventional chemotherapeutic agents. The most important features are independence of the blood–brain barrier, cell type specificity, and reduced resistance. Malignant brain tumors, especially malignant gliomas, are among the most vascularized tumors known. Despite multimodal therapeutic approaches, the prognosis remains dismal. Thus, angiogenesis inhibitors may be highly effective drugs against these tumors. In a clinical setting, they could be applied in the treatment of multiple tumors or postsurgically as an adjuvant therapy to prevent recurrence.

This article provides an overview of current anti-angiogenic treatment strategies with emphasis on substances already in clinical trials or candidate substances for clinical trials. The cellular and molecular basis of these substances is reviewed.

Angiogenesis brain tumor glioma clinical trials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulrauf SI, Edvardsen K, Ho KL, Yang XY, Rock JP, Rosenblum ML: Vascular endothelial growth factor expression vascular density as prognostic markers of survival in patients with low-grade astrocytoma. J Neurosurg 88: 513-520, 1998Google Scholar
  2. 2.
    Arap W, Pasqualini R, Ruoslahti E: Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279: 377-380, 1998Google Scholar
  3. 3.
    Arap W, Pasqualini R, Ruoslahti E: Chemotherapy targeted to tumor vasculature. Curr Opin Oncol 10: 560-565, 1998Google Scholar
  4. 4.
    Asch AS, Barnwell J, Silverstein RL, Nachman RL: Isolation of the thrombospondin membrane receptor. J Clin Invest 79: 1054-1061, 1987Google Scholar
  5. 5.
    Aviezer D, Cotton S, David M, Segev A, Khaselev N, Galili N, Gross Z, Yayon A: Porphyrin analogues as novel antagonists of fibroblast growth factor vascular endothelial growth factor receptor binding that inhibit endothelial cell proliferation, tumor progression, metastasis. Cancer Res 60: 2973-2980, 2000Google Scholar
  6. 6.
    Baenziger NL, Brodie GN, Majerus PW: A thrombinsensitive protein of human platelet membranes. Proc Natl Acad Sci USA 68: 240-243, 1971Google Scholar
  7. 7.
    Barinaga M: Designing therapies that target tumor blood vessels. Science 275: 482-484, 1997Google Scholar
  8. 8.
    Belotti D, Paganoni P, Giavazzi R: MMP inhibitors: experimental and clinical studies. Int J Biol Markers 14: 232-238, 1999Google Scholar
  9. 9.
    Bernsen HJ, Rijken PF, Peters JP, Bakker JH, Boerman RH, Wesseling P, van der Kogel AJ: Suramin treatment of human glioma xenografts; effects on tumor vasculature and oxygenation status. J Neuro-Oncol 44: 129-136, 1999Google Scholar
  10. 10.
    Binetruy-Tournaire R, Demangel C, Malavaud B, Vassy R, Rouyre S, Kraemer M, Plouet J, Derbin C, Perret G, Mazie JC: Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. EMBO J 19: 1525-1533, 2000Google Scholar
  11. 11.
    Bocci G, Danesi R, Benelli U, Innocenti F, Di Paolo A, Fogli S, Del Tacca M: Inhibitory effect of suramin in rat models of angiogenesis in vitro and in vivo. Cancer Chemother Pharmacol 43: 205-212, 1999Google Scholar
  12. 12.
    Boehm T, Folkman J, Browder T, O'Reilly MS: Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390: 404-407, 1997Google Scholar
  13. 13.
    Boehm T, O'Reilly MS, Keough K, Shiloach J, Shapiro R, Folkman J: Zinc-binding of endostatin is essential for its antiangiogenic activity. Biochem Biophys Res Commun 252: 190-194, 1998Google Scholar
  14. 14.
    Boggid MD, Pistorello M, Perett CW, Thakker RV, Clayton RN: The molecular pathogenesis of sporadic pituitary adenomas. Endoc Soc Meet 75: 970, 1993Google Scholar
  15. 15.
    Borgstrom P, Bourdon MA, Hillan KJ, Sriramarao P, Ferrara N: Neutralizing anti-vascular endothelial growth factor antibody completely inhibits angiogenesis and growth of human prostate carcinoma micro tumors in vivo. Prostate 35: 1-10, 1998Google Scholar
  16. 16.
    Borgstrom P, Hillan KJ, Sriramarao P, Ferrara N: Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody: novel concepts of angiostatic therapy from intravital videomicroscopy. Cancer Res 56: 4032-4039, 1996Google Scholar
  17. 17.
    Brooks PC, Clark RA, Cheresh DA: Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264: 569-571, 1994Google Scholar
  18. 18.
    Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA: Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79: 1157-1164, 1994Google Scholar
  19. 19.
    Brooks PC, Silletti S, von ST, Friedlander M, Cheresh DA: Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92: 391-400, 1998Google Scholar
  20. 20.
    Brooks PC, Stromblad S, Klemke R, Visscher D, Sarkar FH, Cheresh DA: Anti-integrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 96: 1815-1822, 1995Google Scholar
  21. 21.
    Brooks PC, Stromblad S, Sanders LC, von ST, Aimes RT, Stetler-Stevenson WG, Quigley JP, Cheresh DA: Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85: 683-693, 1996Google Scholar
  22. 22.
    Brower V: Tumor angiogenesis-new drugs on the block. Nat Biotechnol 17: 963-968, 1999Google Scholar
  23. 23.
    Brown LF, Berse B, Jackman RW, Tognazzi K, Guidi AJ, Dvorak HF, Senger DR, Connolly JL, Schnitt SJ: Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Human Pathol 26: 86-91, 1995Google Scholar
  24. 24.
    Cao R, Wu HL, Veitonmaki N, Linden P, Farnebo J, Shi GY, Cao Y: Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proc Natl Acad Sci USA 96: 5728-5733, 1999Google Scholar
  25. 25.
    Cao Y, Ji RW, Davidson D, Schaller J, Marti D, Sohndel S, McCance SG, O'Reilly MS, Llinas M Folkman J: Kringle domains of human angiostatin. Characterization of the antiproliferative activity on endothelial cells. J Biol Chem 271: 29461-29467, 1996Google Scholar
  26. 26.
    Carroll RS, Zhang J, Bello L, Melnick MB, Maruyama T, McL BP: KDR activation in astrocytic neoplasms. Cancer 86: 1335-1341, 1999Google Scholar
  27. 27.
    Carron CP, Meyer DM, Pegg JA, Engleman VW, Nickols MA, Settle SL, Westlin WF, Ruminski PG, Nickols GA: A peptidomimetic antagonist of the integrin alpha(v)beta3 inhibits Leydig cell tumor growth and the development of hypercalcemia of malignancy. Cancer Res 58: 1930-1935, 1998Google Scholar
  28. 28.
    Castronovo V, Belotti D: TNP-470 (AGM-1470): mechanisms of action and early clinical development. Eur J Cancer 32A: 2520-2527, 1996Google Scholar
  29. 29.
    Cheng SY, Huang HJ, Nagane M, Ji XD, Wang D, Shih CC, Arap W, Huang CM, Cavenee WK: Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci USA 93: 8502-8507, 1996Google Scholar
  30. 30.
    Claesson-Welsh L, Welsh M, Ito N, Anand-Apte B, Soker S, Zetter B, O'Reilly M, Folkman, J.: Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc Natl Acad Sci USA 95: 5579-5583, 1998Google Scholar
  31. 31.
    Cockett MI, Murphy G, Birch ML, O'Connell JP, Crabbe T, Millican AT, Hart IR, Docherty AJ: Matrix metalloproteinases and metastatic cancer. Biochem Soc Symp 63: 295-313, 1998Google Scholar
  32. 32.
    Colorado PC, Torre A, Kamphaus G, Maeshima Y, Hopfer H, Takahashi K, Volk R, Zamborsky ED, Herman S, Sarkar PK, Ericksen MB, Dhanabal M, Simons M, Post M, Kufe DW, Weichselbaum RR, Sukhatme VP, Kalluri R: Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 60: 2520-2526, 2000Google Scholar
  33. 33.
    Coomber BL: Suramin inhibits C6 glioma-induced angiogenesis in vitro. J Cell Biochem 58: 199-207, 1995Google Scholar
  34. 34.
    Cornelius LA, Nehring LC, Harding E, Bolanowski M, Welgus HG, Kobayashi DK, Pierce RA, Shapiro SD: Matrix metalloproteinases generate angiostatin: effects on neovascularization. J Immunol 161: 6845-6852, 1998Google Scholar
  35. 35.
    D'Amato RJ, Loughnan MS, Flynn E, Folkman J: Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91: 4082-4085, 1994Google Scholar
  36. 36.
    D'Angelo G, Struman I, Martial J, Weiner RI: Activation of mitogen-activated protein kinases by vascular endothelial growth factor and basic fibroblast growth factor in capillary endothelial cells is inhibited by the antiangiogenic factor 16-kDa N-terminal fragment of prolactin. Proc Natl Acad Sci USA 92: 6374-6378, 1995Google Scholar
  37. 37.
    Dameron KM, Volpert OV, Tainsky MA, Bouck N: Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265: 1582-1584, 1994Google Scholar
  38. 38.
    Damert A, Machein M, Breier G, Fujita MQ, Hanahan D, Risau W, Plate KH: Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-driven mechanisms. Cancer Res 57: 3860-3864, 1997Google Scholar
  39. 39.
    Dawson DW, Volpert OV, Pearce SF, Schneider AJ, Silverstein RL, Henkin J, Bouck NP: Three distinct D-amino acid substitutions confer potent antiangiogenic activity on an inactive peptide derived from a thrombospondin-1 type 1 repeat. Mol Pharmacol 55: 332-338, 1999Google Scholar
  40. 40.
    Deryugina EI, Bourdon MA, Luo GX, Reisfeld RA, Strongin A: Matrix metalloproteinase-2 activation modulates glioma cell migration. J Cell Sci 110: 2473-2482, 1997Google Scholar
  41. 41.
    Detmar M, Velasco P, Richard L, Claffey KP, Streit M, Riccardi L, Skobe M, Brown LF: Expression of vascular endothelial growth factor induces an invasive phenotype in human squamous cell carcinomas. Am J Pathol 156: 159-167, 2000Google Scholar
  42. 42.
    Dhanabal M, Ramchandran R, Waterman MJ, Lu H, Knebelmann B, Segal M, Sukhatme V.P: Endostatin induces endothelial cell apoptosis. J Biol Chem 274: 11721-11726, 1999Google Scholar
  43. 43.
    Dhanabal M, Volk R, Ramchandran R, Simons M, Sukhatme VP: Cloning, expression, and in vitro activity of human endostatin. Biochem Biophys Res Commun 258: 345-352, 1999Google Scholar
  44. 44.
    Ding YH, Javaherian K, Lo KM, Chopra R, Boehm T, Lanciotti J, Harris BA, Li Y, Shapiro R, Hohenester E, Timpl R, Folkman J, Wiley DC: Zinc-dependent dimers observed in crystals of human endostatin. Proc Natl Acad Sci USA 95: 10443-10448, 1998Google Scholar
  45. 45.
    DiPietro LA, Nebgen DR, Polverini PJ: Downregulation of endothelial cell thrombospondin 1 enhances in vitro angiogenesis. J Vasc Res 31: 178-185, 1994Google Scholar
  46. 46.
    Dixelius J, Larsson H, Sasaki T, Holmqvist K, Lu L, Engstrom A, Timpl R, Welsh M, Claesson-Welsh L: Endostatin-induced tyrosine kinase signaling through the shb adaptor protein regulates endothelial cell apoptosis. Blood 95: 3403-3411, 2000Google Scholar
  47. 47.
    Dumont DJ, Gradwohl G, Fong GH, Puri MC, Gertsenstein M, Auerbach A, Breitman ML: Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8: 1897-1909, 1994Google Scholar
  48. 48.
    Eisen T, Boshoff C, Mak I, Sapunar F, Vaughan MM, Pyle L, Johnston SR, Ahern R, Smith IE, Gore ME: Continuous low dose Thalidomide: a phase II study in advanced melanoma, renal cell, ovarian and breast cancer. Br J Cancer 82: 812-817, 2000Google Scholar
  49. 49.
    Ferrara N, Alitalo K: Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 5: 1359-1364, 1999Google Scholar
  50. 50.
    Fine HA, Figg WD, Jaeckle K, Wen PY, Kyritsis AP, Loeffler JS, Levin VA, Black PM, Kaplan R, Pluda JM, Yung WK: Phase II Trial of the Antiangiogenic Agent Thalidomide in Patients With Recurrent High-Grade Gliomas. J Clin Oncol 18: 708, 2000Google Scholar
  51. 51.
    Firsching A, Nickel P, Mora P, Allolio B: Antiproliferative and angiostatic activity of suramin analogues. Cancer Res 55: 4957-4961, 1995Google Scholar
  52. 52.
    Fishel R, Lescoe MK, Rao M, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R: The human mutator gene homolog msh2 and its association with hereditary nonpolyposis colon cancer. Cell 75: 1027-1038, 1993Google Scholar
  53. 53.
    Fukuda S, Shirahama T, Imazono Y, Tsushima T, Ohmori H, Kayajima T, Take S, Nishiyama K, Yonezawa S, Akiba S, Akiyama S, Ohi Y: Expression of vascular endothelial growth factor in patients with testicular germ cell tumors as an indicator of metastatic disease. Cancer 85: 1323-1330, 1999Google Scholar
  54. 54.
    Gagliardi AR, Kassack M, Kreimeyer A, Muller G, Nickel P, Collins DC: Antiangiogenic and antiproliferative activity of suramin analogues. Cancer Chemother Pharmacol 41: 117-124, 1998Google Scholar
  55. 55.
    Gion M, Boracchi P, Dittadi R, Biganzoli E, Peloso L, Gatti C, Paccagnella A, Rosabian A, Vinante O, Meo S: Quantitative measurement of soluble cytokeratin fragments in tissue cytosol of 599 node negative breast cancer patients: a prognostic marker possibly associated with apoptosis. Breast Cancer Res Treat 59: 211-221, 2000Google Scholar
  56. 56.
    Gladson CL: Expression of integrin alpha v beta 3 in small blood vessels of glioblastoma tumors. J Neuropathol Exp Neurol 55: 1143-1149, 1996Google Scholar
  57. 57.
    Goldbrunner RH, Bernstein JJ, Tonn JC: Cell-extracellular matrix interaction in glioma invasion. Acta Neurochir 141: 295-305, 1999Google Scholar
  58. 58.
    Gorski DH, Mauceri HJ, Salloum RM, Gately S, Hellman S, Beckett MA, Sukhatme VP, Soff GA, Kufe DW, Weichselbaum RR: Potentiation of the antitumor effect of ionizing radiation by brief concomitant exposures to angiostatin. Cancer Res 58: 5686-5689, 1998Google Scholar
  59. 59.
    Griscelli F, Li H, Bennaceur-Griscelli A, Soria J, Opolon P, Soria C, Perricaudet M, Yeh P, Lu H: Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc Natl Acad Sci USA 95: 6367-6372, 1998Google Scholar
  60. 60.
    Guidi AJ, Schnitt SJ, Fischer L, Tognazzi K, Harris JR, Dvorak HF, Brown L.F: Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in patients with ductal carcinoma in situ of the breast. Cancer 80: 1945-1953, 1997Google Scholar
  61. 61.
    Hagedorn M, Bikfalvi A: Target molecules for antiangiogenic therapy: from basic research to clinical trials. Crit Rev Oncol Hematol 34: 89-110, 2000Google Scholar
  62. 62.
    Hamby JM, Showalter HD: Small molecule inhibitors of tumor-promoted angiogenesis, including protein tyrosine kinase inhibitors. Pharmacol Ther 82: 169-193, 1999Google Scholar
  63. 63.
    Hamel W, Westphal M: Growth factors in gliomas revisited. Acta Neurochir 142: 113-137, 2000Google Scholar
  64. 64.
    Harbeck N, Alt U, Berger U, Kates R, Kruger A, Thomssen C, Janicke F, Graeff H, Schmitt M: Long-term follow-up confirms prognostic impact of PAI-1 and cathepsin D and L in primary breast cancer. Int J Biol Markers 15: 79-83, 2000Google Scholar
  65. 65.
    Hartenbach EM, Olson TA, Goswitz JJ, Mohanraj D, Twiggs LB, Carson LF, Ramakrishnan S: Vascular endothelial growth factor (VEGF) expression and survival in human epithelial ovarian carcinomas. Cancer Lett 121: 169-175, 1997Google Scholar
  66. 66.
    Hasuike T, Hino M, Yamane T, Nishizawa Y, Morii H, Tatsumi N: Effects of TNP-470, a potent angiogenesis inhibitor, on growth of hematopoietic progenitors. Eur J Haematol 58: 293-294, 1997Google Scholar
  67. 67.
    Holmgren L, O'Reilly MS, Folkman J: Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1: 149-153, 1995Google Scholar
  68. 68.
    Hosang M: Suramin binds to platelet-derived growth factor and inhibits its biological activity. J Cellu Biochem 29: 265-273, 1985Google Scholar
  69. 69.
    Hsu SC, Volpert OV, Steck PA, Mikkelsen T, Polverini PJ, Rao S, Chou P, Bouck NP: Inhibition of angiogenesis in human glioblastomas by chromosome 10 induction of thrombospondin-1. Cancer Res 56: 5684-5691, 1996Google Scholar
  70. 70.
    Ikeda N, Adachi M, Taki T, Huang C, Hashida H, Takabayashi A, Sho M, Nakajima Y, Kanehiro H, Hisanaga M, Nakano H, Miyake M: Prognostic significance of angiogenesis in human pancreatic cancer. Br J Cancer 79: 1553-1563, 1999Google Scholar
  71. 71.
    Ingber D, Fujita T, Kishimoto S, Sudo K, Kanamaru T, Brem H, Folkman J: Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 348: 555-557, 1990Google Scholar
  72. 72.
    Isobe N, Uozumi T, Kurisu K, Kawamoto K: Antitumor effect of TNP-470 on glial tumors transplanted in rats. Anti-cancer Res 16: 71-76, 1996Google Scholar
  73. 73.
    Isobe N, Uozumi T, Kurisu K, Kawamoto K: Experimental studies of the antitumor effect of TNP-470 on malignant 160 brain tumors. Antitumor effect of TNP-470 on a human medulloblastoma xenograft line. Neuropediatrics 27: 136-142, 1996Google Scholar
  74. 74.
    Ito H, Rovira II, Bloom ML, Takeda K, Ferrans VJ, Quyyumi AA, Finkel T: Endothelial progenitor cells as putative targets for angiostatin. Cancer Res 59: 5875-5877, 1999Google Scholar
  75. 75.
    Itoh T, Hayashi Y, Kanamaru T, Morita Y, Suzuki S, WangW, Zhou L, Rui JA, Yamamoto M, Kuroda Y, Itoh H: Clinical significance of urokinase-type plasminogen activator activity in hepatocellular carcinoma. J Gastroenterol Hepatol 15: 422-430, 2000Google Scholar
  76. 76.
    Joussen AM, Germann T, Kirchhof B: Effect of thalidomide and structurally related compounds on corneal angiogenesis is comparable to their teratological potency. Graefes Arch Clin Exp Ophthalmol 237: 952-961, 1999Google Scholar
  77. 77.
    Juliusson G, Celsing F, Turesson I, Lenhoff S, Adriansson M, Malm C: Frequent good partial remissions from thalidomide including best response ever in patients with advanced refractory and relapsed myeloma. Br J Haematol 109: 89-96, 2000Google Scholar
  78. 78.
    Kalkanis SN, Carroll RS, Zhang J, Zamani AA, Black PM: Correlation of vascular endothelial growth factor messenger RNA expression with peritumoral vasogenic cerebral edema in meningiomas. J Neurosurg 85: 1095-1101, 1996Google Scholar
  79. 79.
    Kamphaus GD, Colorado PC, Panka DJ, Hopfer H, Ramchandran R, Torre A, Maeshima Y, Mier JW, Sukhatme VP, Kalluri R: Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 275: 1209-1215, 2000Google Scholar
  80. 80.
    Kerbel RS: Tumor angiogenesis: past, present and the near future. Carcinogenesis 21: 505-515, 2000Google Scholar
  81. 81.
    Kerr JS, Wexler RS, Mousa SA, Robinson CS, Wexler EJ, Mohamed S, Voss ME, Devenny JJ, Czerniak PM, Gudzelak Jr. A, Slee AM: Novel small molecule alpha v integrin antagonists: comparative anti-cancer efficacy with known angiogenesis inhibitors. Anticancer Res 19: 959-968, 1999Google Scholar
  82. 82.
    Kleiner DE, Stetler-Stevenson WG: Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol 43 (Suppl. S42-51): S42-S51, 1999Google Scholar
  83. 83.
    Klohs WD, Hamby JM: Antiangiogenic agents. Curr Opin Biotechnol 10: 544-549, 1999Google Scholar
  84. 84.
    Kneller A, Raanani P, Hardan I, Avigdor A, Levi I, Berkowicz M, Ben Bassat I: Therapy with thalidomide in refractory multiple myeloma patients-the revival of an old drug. Br J Haematol 108: 391-393, 2000Google Scholar
  85. 85.
    Koivunen E, Arap W, Valtanen H, Rainisalo A, Medina OP, Heikkila P, Kantor C, Gahmberg CG, Salo T, Konttinen YT, Sorsa T, Ruoslahti E, Pasqualini R: Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 17: 768-774, 1999Google Scholar
  86. 86.
    Kotoh T, Dhar DK, Masunaga R, Tabara H, Tachibana M, Kubota H, Kohno H, Nagasue N: Antiangiogenic therapy of human esophageal cancers with thalidomide in nude mice. Surgery 125: 536-544, 1999Google Scholar
  87. 87.
    Kremer C, Breier G, Risau W, Plate KH: Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Cancer Res 57: 3852-3859, 1997Google Scholar
  88. 88.
    Lijnen HR, Ugwu F, Bini A, Collen D: Generation of an angiostatin-like fragment from plasminogen by stromelysin-1 (MMP-3). Biochemistry 37: 4699-4702, 1998Google Scholar
  89. 89.
    Lin P, Buxton JA, Acheson A, Radziejewski C, Maisonpierre PC, Yancopoulos GD, Channon KM, Hale LP, Dewhirst MW, George SE, Peters KG: Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc Natl Acad Sci USA 95: 8829-8834, 1998Google Scholar
  90. 90.
    Lin P, Polverini P, Dewhirst M, Shan S, Rao PS, Peters K: Inhibition of tumor angiogenesis using a soluble receptor establishes a role for Tie2 in pathologic vascular growth. J Clin Invest 100: 2072-2078, 1997Google Scholar
  91. 91.
    MacDonald NJ, Murad AC, Fogler WE, Lu Y, Sim BK: The tumor-suppressing activity of angiostatin protein resides within kringles 1-3. Biochem Biophys Res Commun 264: 469-477, 1999Google Scholar
  92. 92.
    Maier JA, Delia D, Thorpe PE, Gasparini G: In vitro inhibition of endothelial cell growth by the antiangiogenic drug AGM-1470 (TNP-470) and the anti-endoglin antibody TEC-11. Anticancer Drugs 8: 238-244, 1997Google Scholar
  93. 93.
    Maione TE, Gray GS, Petro J, Hunt AJ, Donner AL, Bauer SI, Carson HF, Sharpe RJ: Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 247: 77-79, 1990Google Scholar
  94. 94.
    Mandriota SJ, Pyke C, Di Sanza C, Quinodoz P, Pittet B, Pepper MS: Hypoxia-inducible angiopoietin-2 expression is mimicked by iodonium compounds and occurs in the rat brain and skin in response to systemic hypoxia and tissue ischemia. Am J Pathol 156: 2077-2089, 2000Google Scholar
  95. 95.
    Mauceri HJ, Hanna NN, Beckett MA, Gorski DH, Staba MJ, Stellato KA, Bigelow K, Heimann R, Gately S, Dhanabal M, Soff GA, Sukhatme VP, Kufe DW, Weichselbaum RR: Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature 394: 287-291, 1998Google Scholar
  96. 96.
    McCarty MF: Thalidomide may impede cell migration in primates by down-regulating integrin beta-chains: potential therapeutic utility in solid malignancies, proliferative retinopathy, inflammatory disorders, neointimal hyperplasia, and osteoporosis. Med Hypotheses 49: 123-131, 1997Google Scholar
  97. 97.
    Minchinton AI, Fryer KH, Wendt KR, Clow KA, Hayes MM: The effect of thalidomide on experimental tumors and metastases. Anticancer Drugs 7: 339-343, 1996Google Scholar
  98. 98.
    Mordenti J, Thomsen K, Licko V, Chen H, Meng YG, Ferrara N: Efficacy and concentration-response of murine anti-VEGF monoclonal antibody in tumor-bearing mice and extrapolation to humans. Toxicol Pathol 27: 14-21, 1999Google Scholar
  99. 99.
    Moreira AL, Friedlander DR, Shif B, Kaplan G, Zagzag D: Thalidomide and a thalidomide analogue inhibit endothelial cell proliferation in vitro. J Neuro-Oncol 43: 109-114, 1999Google Scholar
  100. 100.
    Moser TL, Stack MS, Asplin I, Enghild JJ, Jrup P, Everitt L, Hubchak S, Schnaper HW, Pizzo SV: Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA 96: 2811-2816, 1999Google Scholar
  101. 101.
    Muragaki Y, Timmons S, Griffith CM, Oh SP, Fadel B, Quertermous T, Olsen BR: Mouse Col18a1 is expressed in a tissue-specific manner as three alternative variants and is localized in basement membrane zones. Proc Natl Acad Sci USA 92: 8763-8767, 1995Google Scholar
  102. 102.
    Nakagawa T, Kubota T, Kabuto M, Fujimoto N, Okada Y: Secretion of matrix metalloproteinase-2 (72 kD gelatinase/ type IV collagenase D gelatinase A) by malignant human glioma cell lines: implications for the growth and cellular invasion of the extracellular matrix. J Neuro-Oncol 28: 13-24, 1996Google Scholar
  103. 103.
    O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J: Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277-285, 1997Google Scholar
  104. 104.
    O'Reilly MS, Holmgren L, Chen C, Folkman J: Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature Medicine 2: 689-692, 1996Google Scholar
  105. 105.
    O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Cao Y, Moses M, Lane WS, Sage EH, Folkman J: Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harbor Symposia Quantitat Biol 59: 471-482, 1994Google Scholar
  106. 106.
    O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses MLW, Cao Y, Sage EH, Folkman J: Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315-328, 1994Google Scholar
  107. 107.
    O'Reilly MS, Wiederschain D, Stetler-Stevenson WG, Folkman J, Moses MA: Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J Biol Chem 274: 29568-29571, 1999Google Scholar
  108. 108.
    Oehring RD, Miletic M, Valter MM, Pietsch T, Neumann J, Fimmers R, Schlegel U: Vascular endothelial growth factor (VEGF) in astrocytic gliomas-a prognostic factor? J Neuro-Oncol 45: 117-125, 1999Google Scholar
  109. 109.
    Olson TA, Mohanraj D, Roy S, Ramakrishnan S: Targeting the tumor vasculature: inhibition of tumor growth by a vascular endothelial growth factor-toxin conjugate. Int J Cancer 73: 865-870, 1997Google Scholar
  110. 110.
    Partanen J, Dumont DJ: Functions of Tie1 and Tie2 receptor tyrosine kinases in vascular development. Curr Top Microbiol Immunol 237: 159-172, 1999Google Scholar
  111. 111.
    Pasqualini R, Koivunen E, Ruoslahti E: Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15: 542-546, 1997Google Scholar
  112. 112.
    Patt YZ, Hassan MM, Lozano RD, Ellis LM, Peterson JA, Waugh KA: Durable clinical response of refractory hepatocellular carcinoma to orally administered thalidomide. Am J Clin Oncol 23: 319-321, 2000Google Scholar
  113. 113.
    Patterson BC, Sang QA: Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J Biol Chem 272: 28823-28825, 1997Google Scholar
  114. 114.
    Paulus W, Tonn JC: Basement membrane invasion of glioma cells mediated by integrin receptors. J Neurosurg 80: 515-519, 1994Google Scholar
  115. 115.
    Petitclerc E, Boutaud A, Prestayko A, Xu J, Sado Y, Ninomiya Y, Sarras Jr. MP, Hudson BG, Brooks PC: New functions for non-collagenous domains of human collagen type IV. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo. J Biol Chem 275: 8051-8061, 2000Google Scholar
  116. 116.
    Plate KH, Breier G, Millauer B, Ullrich A, Risau W: Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res 53: 5822-5827, 1993Google Scholar
  117. 117.
    Plate KH, Breier G, Weich HA, Risau W: Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359: 845-848, 1992Google Scholar
  118. 118.
    Provias J, Claffey K, delAguila L, Lau N, Feldkamp M, Guha A: Meningiomas: role of vascular endothelial growth factor/vascular permeability factor in angiogenesis and peritumoral edema. Neurosurgery 40: 1016-1026, 1997Google Scholar
  119. 119.
    Rabbani SA: Metalloproteases and urokinase in angiogenesis and tumor progression. In Vivo 12: 135-142, 1998Google Scholar
  120. 120.
    Samoto K, Ikezaki K, Ono M, Shono T, Kohno K, Kuwano M, Fukui M: Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer Res 55: 1189-1193, 1995Google Scholar
  121. 121.
    Sasaki M, Wizigmann-Voos S, Risau W, Plate KH: Retrovirus producer cells encoding antisense VEGF prolong survival of rats with intracranial GS9L gliomas. Int J Dev Neurosci 17: 579-591, 1999Google Scholar
  122. 122.
    Sasaki T, Fukai N, Mann K, Gohring W, Olsen BR, Timpl R: Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. EMBO J 17: 4249-4256, 1998Google Scholar
  123. 123.
    Schrell UM, Gauer S, Kiesewetter F, Bickel A, Hren J, Adams EF, Fahlbusch R: Inhibition of proliferation of human cerebral meningioma cells by suramin: effects on cell growth, cell cycle phases, extracellular growth factors, and PDGF-BB autocrine growth loop. J Neurosurg 82: 600-607, 1995Google Scholar
  124. 124.
    Sharpe RJ, Byers HR, Scott CF, Bauer SI, Maione TE: Growth inhibition of murine melanoma and human colon carcinoma by recombinant human platelet factor 4. J National Cancer Inst 82: 848-853, 1990Google Scholar
  125. 125.
    Stephens TD, Bunde CJ, Fillmore BJ: Mechanism of action in thalidomide teratogenesis. Biochem Pharmacol 59: 1489-1499, 2000Google Scholar
  126. 126.
    Stephens TD, Fillmore BJ: Hypothesis: thalidomide embryopathy-proposed mechanism of action. Teratology 61: 189-195, 2000Google Scholar
  127. 127.
    Stratmann A, Risau W, Plate KH: Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 153: 1459-1466, 1998Google Scholar
  128. 128.
    Streit M, Riccardi L, Velasco P, Brown LF, Hawighorst T, Bornstein P, Detmar M: Thrombospondin-2: a potent endogenous inhibitor of tumor growth and angiogenesis. Proc Natl Acad Sci USA 96: 14888-14893, 1999Google Scholar
  129. 129.
    Streit M, Velasco P, Brown LF, Skobe M, Richard L, Riccardi L, Lawler J, Detmar M: Overexpression of thrombospondin-1 decreases angiogenesis and inhibits the 162 growth of human cutaneous squamous cell carcinomas. Am J Pathol 155: 441-452, 1999Google Scholar
  130. 130.
    Strugar J, Rothbart D, Harrington W, Criscuolo GR:Vascular permeability factor in brain metastases: correlation with vasogenic brain edema and tumor angiogenesis. J Neurosurg 81: 560-566, 1994Google Scholar
  131. 131.
    Strugar JG, Criscuolo GR, Rothbart D, Harrington WN: Vascular endothelial growth/permeability factor expression in human glioma specimens: correlation with vasogenic brain edema and tumor-associated cysts. J Neurosurg 83: 682-689, 1995Google Scholar
  132. 132.
    Takechi A, Uozumi T, Kawamoto K, Ito A, Kurisu K, Sudo K: Inhibitory effect of TNP-470, a new antiangiogenic agent, on the estrogen induced rat pituitary tumors. Anticancer Res 14: 157-162, 1994Google Scholar
  133. 133.
    Taki T, Ohnishi T, Arita N, Hiraga S, Saitoh Y, Izumoto S, Mori K, Hayakawa T: Anti-proliferative effects of TNP-470 on human malignant glioma in vivo: potent inhibition of tumor angiogenesis. J Neuro-Oncol 19: 251-258, 1994Google Scholar
  134. 134.
    Talbot DC, Brown PD: Experimental and clinical studies on the use of matrix metalloproteinase inhibitors for the treatment of cancer. Eur J Cancer 32A: 2528-2533, 1996Google Scholar
  135. 135.
    Tanaka T, Cao Y, Folkman J, Fine HA: Viral vector-targeted antiangiogenic gene therapy utilizing an angiostatin complementary DNA. Cancer Res 58: 3362-3369, 1998Google Scholar
  136. 136.
    Thorgeirsson UP, Lindsay CK, Cottam DW, Gomez DE: Tumor invasion, proteolysis, and angiogenesis. J Neuro-Oncol 18: 89-103, 1994Google Scholar
  137. 137.
    Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD: Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6: 460-463, 2000Google Scholar
  138. 138.
    Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM: Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286: 2511-2514, 1999Google Scholar
  139. 139.
    Tolsma SS, Stack MS, Bouck N.: Lumen formation and other angiogenic activities of cultured capillary endothelial cells are inhibited by thrombospondin-1. Microvasc Res 54: 13-26, 1997Google Scholar
  140. 140.
    Tolsma SS, Volpert OV, Good DJ, Frazier WA, Polverini PJ, Bouck N: Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol 122: 497-511, 1993Google Scholar
  141. 141.
    Tupchong L, Levison DA, Jones AE: Concomitant conjugal gliomas with similar histologic features. Cancer 55: 864-869, 1985Google Scholar
  142. 142.
    Verheul HM, Panigrahy D, Yuan J, D'Amato RJ: Combination oral antiangiogenic therapy with thalidomide and sulindac inhibits tumour growth in rabbits. Br J Cancer 79: 114-118, 1999Google Scholar
  143. 143.
    Vince GH, Wagner S, Pietsch T, Klein R, Goldbrunner RH, Roosen K, Tonn JC: Heterogeneous regional expression patterns of matrix metalloproteinases in human malignant gliomas. Int J Dev Neurosci 17: 437-445, 1999Google Scholar
  144. 144.
    Wagner S, Stegen C, Bouterfa H, Huettner C, Kerkau S, Roggendorf W, Roosen K, Tonn JC: Expression of matrix metalloproteinases in human glioma cell lines in the presence of IL-10. J Neuro-Oncol 40: 113-122, 1998Google Scholar
  145. 145.
    Waltenberger J, Mayr U, Frank H, Hombach V: Suramin is a potent inhibitor of vascular endothelial growth factor. A contribution to the molecular basis of its antiangiogenic action. J Mol Cell Cardiol 28: 1523-1529, 1996Google Scholar
  146. 146.
    Wassberg E, Pahlman S, Westlin JE, Christofferson R: The angiogenesis inhibitor TNP-470 reduces the growth rate of human neuroblastoma in nude rats. Pediatr Res 41: 327-333, 1997Google Scholar
  147. 147.
    Weinstat-Saslow DL, Zabrenetzky VS, VanHoutte K, Frazier WA, Roberts DD, Steeg PS: Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Res 54: 6504-6511, 1994Google Scholar
  148. 148.
    Yamaguchi N, Anand-Apte B, Lee M, Sasaki T, Fukai N, Shapiro R, Que I, Lowik C, Timpl R, Olsen BR: Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J 18: 4414-4423, 1999Google Scholar
  149. 149.
    Yazaki T, Takamiya Y, Costello PC, Mineta T, Menon AG, Rabkin SD, Martuza RL: Inhibition of angiogenesis and growth of human non-malignant and malignant meningiomas by TNP-470. J Neuro-Oncol 23: 23-29, 1995Google Scholar
  150. 150.
    Yokoyama Y, Dhanabal M, Griffioen AW, Sukhatme VP, Ramakrishnan S: Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth. Cancer Res 60: 2190-2196, 2000Google Scholar
  151. 151.
    Yoon SS, Eto H, Lin CM, Nakamura H, Pawlik TM, Song SU, Tanabe KK: Mouse endostatin inhibits the formation of lung and liver metastases. Cancer Res 59: 6251-6256, 1999Google Scholar
  152. 152.
    You WK, So SH, Lee H, Park SY, Yoon MR, Chang SI, Kim HK, Joe YA, Hong YK, Chung SI: Purification and characterization of recombinant murine endostatin in E. coli. Exp Mol Med 31: 197-202, 1999Google Scholar
  153. 153.
    Zagzag D, Amirnovin R, Greco MA, Yee H, Holash J, Wiegand SJ, Zabski S, Yancopoulos GD, Grumet M: Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest 80: 837-849, 2000Google Scholar
  154. 154.
    Zagzag D, Hooper A, Friedlander DR, Chan W, Holash J, Wiegand SJ, Yancopoulos GD, Grumet M: In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol 159: 391-400, 1999Google Scholar
  155. 155.
    Zhu Z, Witte L: Inhibition of tumor growth and metastasis by targeting tumor-associated angiogenesis with antagonists to the receptors of vascular endothelial growth factor. Invest New Drugs 17: 195-212, 1999Google Scholar
  156. 156.
    Zimrin AB, Villeponteau B, Maciag T: Models of in vitro angiogenesis: endothelial cell differentiation on fibrin but not matrigel is transcriptionally dependent. Biochem Biophys Res Commun 213: 630-638, 1995Google Scholar
  157. 157.
    Zomas A, Anagnostopoulos N, Dimopoulos MA: Successful treatment of multiple myeloma relapsing after high-dose therapy and autologous transplantation with thalidomide as a single agent. Bone MarrowTransplant 25: 1319-1320, 2000Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Matthias Kirsch
    • 1
  • Gabriele Schackert
    • 1
  • Peter McL. Black
    • 2
  1. 1.Klinik und Poliklinik für NeurochirurgieTechnische Universität DresdenGermany
  2. 2.NeurosurgeryChildren's HospitalBostonUSA

Personalised recommendations