Advertisement

Journal of Neuro-Oncology

, Volume 47, Issue 2, pp 153–160 | Cite as

Meningiomas in Singapore: Demographic and Biological Characteristics

  • Asha Das
  • Wen-Ying Tang
  • Duncan R. Smith
Article

Abstract

We sought to determine the relative incidence of meningiomas compared to other central nervous system tumours in an Asian surgical series, as well as the demographic and biological characteristics of these meningiomas. A review of 655 consecutive cases of central nervous system tumours from 583 patients representing the last five years admissions to one hospital in Singapore was undertaken. A total of 33 malignant/atypical tumours from 19 patients and 196 benign meningiomas from 187 patients were identified. Twenty malignant/atypical and 20 benign tumours were selected at random and subjected to histochemical and immunohistochemical analysis using antibodies directed against p53, bax and 3′-DNA hydroxy groups (TUNEL). Meningiomas comprised some 35.2% of all central nervous system tumours with malignant/atypical meningiomas representing 9.2% of meningiomas. Histochemically, necrosis was the predominant finding. However, peri-necrotic areas displayed p53 positivity in 10% of cases and bax positivity in 25% of cases. Apoptotic cells were detected in the peri-necrotic areas in 90% of benign and 75% of malignant/atypical meningiomas. Meningiomas represent the predominant form of central nervous system tumour in the Singaporean population, and aberration of p53 expression is not associated with tumour formation or progression. There was a slight but non-significant reduction in apoptosis in the progression from benign to malignant meningioma, suggesting that in contrast to many other tumour types disruption of cellular apoptosis is not a predominant driving force in Asian meningioma tumourigenesis.

tumour apoptosis incidence p53 bax immunohistochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Mefty O, Origitano TC: Meningiomas. In: Rengachary SS, Wilkins RH (eds) Principles of Neurosurgery. Wolfe Publishing, London, 1994, pp 28.1-28.12Google Scholar
  2. 2.
    Black PM: Meningiomas. Neurosurgery 32: 643-657, 1993Google Scholar
  3. 3.
    Cushing H: Intrakranielle Tumouren. Berlin, Springer, 1935Google Scholar
  4. 4.
    Kepes JJ: Menigiomas. Biology, Pathology and Differential Diagnosis. Masson, New York, 1982Google Scholar
  5. 5.
    Rachlin JR, Rosenblum ML: Etiology and biology of meningiomas. In Al-Mefty O (ed) Meningiomas. Raven Press, New York, 1991, pp 27-36Google Scholar
  6. 6.
    De Monte F: Current management of meningiomas. Oncology 9: 83-91, 1995Google Scholar
  7. 7.
    Bondy M, Ligon BL: Epidemiology and etiology of intracranial tumours: a review. J Neuro-Oncol 29: 197-205, 1996Google Scholar
  8. 8.
    Wen-qing H, Shi-ju Z, Qing-sheng T, Jian-qing H, Yu-xia L, Qing-zhong X, Zi-jun L, Wen-cui Z: Statistical analysis of central nervous system tumours in China. J Neurosurg 56: 555-564, 1982Google Scholar
  9. 9.
    Takeshita I, Yang GR, Piao HZ, Sun SC, Fukui M: Comparative study of brain tumours treated at China Medical University, China and Kyushu University, Japan. Fukuoka Igaku Zasshi 83: 386-391, 1992Google Scholar
  10. 10.
    Langford LA: Pathology of meningiomas. J Neuro-Oncol 29: 217-221, 1996Google Scholar
  11. 11.
    Prayson RA: Malignant meningioma: a clinicopathologic study of 23 patients including MIB1 and p53 immunohistochemistry. Am J Clin Pathol 05: 719-726, 1996Google Scholar
  12. 12.
    Greenblatt MS, Bennett WP, Hollstein M, Harris CC: Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54: 4855-4878, 1994Google Scholar
  13. 13.
    Ellison DW, Lunec J, Gallagher PJ, Steart PV, Jaros E, Gatter KC: Accumulation of wild-type p53 in meningiomas. Neuropathol Appl Neurobiol 21: 136-142, 1995Google Scholar
  14. 14.
    Karamitopoulou E, Perentes E, Tolnay M, Probst A: Prognostic significance of MIB-1, p53, and bcl-2 immunoreactivity in meningiomas. Hum Pathol 29: 140-145, 1998Google Scholar
  15. 15.
    Ohgaki H, Eibl RH, Schwab M, Reichel MB, Mariani L, Gehring M, Petersen I, Holl T, Wiestler OD, Kleihues P: Mutations of the p53 tumor suppressor gene in neoplasms of the human nervous system. Mol Carcinog 8: 74-80, 1993Google Scholar
  16. 16.
    Ohkoudo M, Sawa H, Hara M, Saruta K, Aiso T, Ohki R, Yamamoto H, Maemura E, Shiina Y, Fujii M, Saito I: Expression of p53, MDM2 protein and Ki-67 antigen in recurrent meningiomas. J Neuro-Oncol 38: 41-49, 1998Google Scholar
  17. 17.
    Wang JL, Zhang ZJ, Hartman M, Smits A, Westermark B, Muhr C, Nister M: Detection of TP53 gene mutation in human meningiomas: a study using immunohistochemistry, polymerase chain reaction/single-strand conformation polymorphism and DNA sequencing techniques on paraffinembedded samples. Int J Cancer 66: 223-228, 1995Google Scholar
  18. 18.
    Deppert W: The yin and yang of p53 in cellular proliferation. Semin Cancer Biol 5: 187-202, 1994Google Scholar
  19. 19.
    Oren M: Relationship of p53 to the control of apoptotic cell death. Semin Cancer Biol 5: 221-227, 1994Google Scholar
  20. 20.
    Maier H, Wanschitz J, Sedivy R, Rossler K, Ofner D, Budka H: Proliferation and DNA fragmentation in meningioma subtypes. Neuropathol Appl Neurobiol 23: 496-506, 1997Google Scholar
  21. 21.
    Patsouris E, Davaki P, Kapranos N, Davaris P, Papageorgiou K: A study of apoptosis in brain tumours by in situ end-labeling method. Clin Neuropathol 15: 337-341, 1996Google Scholar
  22. 22.
    Hara A, Hirose Y, Yoshimi N, Tanaka T, Mori H: Expression of Bax and bcl-2 proteins, regulators of programmed cell death, in human brain tumors. Neurol 19: 623-628, 1997Google Scholar
  23. 23.
    Nakasu S, Nakajima M, Nakazawa T, Nakasu Y, Handa J: Alteration of bcl-2 and bax expression in embolized meningiomas. Brain Tumor Pathol 15: 13-17, 1998Google Scholar
  24. 24.
    Ng HK, Chen L: Apoptosis is associated with atypical or malignant change in meningiomas: An in situ labelling and immunohistochemical study. Histopathology 33: 64-70, 1998Google Scholar
  25. 25.
    Hsu S-M, Raine L, Fanger H: Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques. J Histochem Cytochem 29: 577-580, 1981Google Scholar
  26. 26.
    Gavrieli Y, Sherman Y, Ben-Sasson SA: Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119: 493-501, 1992Google Scholar
  27. 27.
    Lau KE: Singapore Census of Population 1990. Statistical Release 1: Demographic Characteristics. Department of Statistics, Singapore, 1992Google Scholar
  28. 28.
    Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ: Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139: 1281-1292, 1997Google Scholar
  29. 29.
    Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R: In situ detection of fragmented DNA (TUNEL assay) fails to discriminate amongst apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 21: 1465-1468, 1995Google Scholar
  30. 30.
    Perry A, Stafford SL, Scheithauer BW, Suman VJ, Lohse CM: The prognostic significance of MIB-1, p53, and DNAflowcytometry in completely resected primary meningiomas. Cancer 82: 2262-2269, 1998Google Scholar
  31. 31.
    Kubbutat MHG, Ludwig RL, Ashcroft M, Vousden KH: Regulation of Mdm2-directed degradation by the C terminus of p53. Mol Cell Biol 18: 5690-5698, 1998Google Scholar
  32. 32.
    Graeber TG, Peterson JF, Tsai M, Monica K, Fornace Jr AJ, Giaccia AJ: Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol 14: 6264-6277, 1994Google Scholar
  33. 33.
    el-Deiry WS: Regulation of p53 downstream genes. Semin Cancer Biol 8: 345-357, 1998Google Scholar
  34. 34.
    Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ: Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379: 88-91, 1996Google Scholar
  35. 35.
    Miyashita T, Reed JC: Tumour suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293-299, 1995Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Asha Das
    • 1
  • Wen-Ying Tang
    • 2
  • Duncan R. Smith
    • 2
  1. 1.Department of Neurology, National Neuroscience InstituteTan Tock Seng HospitalSingapore
  2. 2.Molecular Biology LaboratoryTan Tock Seng HospitalSingapore

Personalised recommendations