Advertisement

Agroforestry Systems

, Volume 50, Issue 2, pp 95–105 | Cite as

Functional compatibility of two arbuscular mycorrhizae with thirteen fruit trees in Senegal

  • A. M. BâEmail author
  • C. Plenchette
  • P. Danthu
  • R. Duponnois
  • T. Guissou
Article

Abstract

Functional compatibility between thirteen tropical fruit trees (Afzelia africana Smith., Adansonia digitata L., Aphania senegalensis Radlk., Anacardium occidentale L., Cordyla pinnata (Lepr. ex A. Rich.) Milne-Redhead, Dialium guineensis Wild., Landolphia heudelottii A.DC., Sclerocarya birrea (A.Roch.) Hochst., Saba senegalensis (A. DC.) Pichon and four reference hosts Balanites aegyptiaca (L.) Del., Parkia biglobosa (Jacq.), Tamarindus indica L. and Zizyphus mauritiana Lam.) and two arbuscular mycorrhizal fungi (AMF) (Glomus aggregatum Schenck and Smith emend. Schenck and Glomus intraradices Schenck and Smith), was investigated. Marked differences were found between them in terms of mycorrhizal formation, root colonization, relative mycorrhizal dependency (RMD) and phosphorus concentrations in shoot tissues. A. africana, L. heudelottii and S. senegalensis did not form symbiotic associations, and the growth of A. africana decreased following mycorrhizal inoculation, while L. heudelottii and S. senegalensis showed no dependency. In contrast, A. digitata, A. senegalensis, A. occidentale, B. aegyptiaca and S. birrea were well colonized with AMF, but did not significantly increase in biomass production. Five fruit trees did, however, show dependency by a positive interaction with G. aggregatum, the most effective AMF. Z. mauritiana was found to be very highly dependent (RMD > 75%), T. indica was highly dependent (50–75% RMD), and D. guineensis, P. biglobosa and C. pinnata were moderately dependent (25–50% RMD). Phosphorus absorption probably contributed to this dependency more than the absorption of potassium. These results indicate that some tropical fruit trees do derive benefits from AM inoculation, while others do not.

arbuscular mycorrhizal fungi mineral nutrition multipurpose fruit trees relative mycorrhizal dependency root colonization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahiator BD and Hirata H (1994) Characteristics responses of three tropical legumes tothe inoc-ulation of two species of VAM fungi in Andosol soils with different fertilites. Mycorrhiza 5: 63–70Google Scholar
  2. Azon R and Barea JM (1997) Mycorrhizal dependency of a representative plant species in mediterranean shrublands (Lavandula spica L.) as a key factors to its use for revegetation strategies in desertification-threatened areas. Applied Soil Ecology 7: 83–92Google Scholar
  3. Bâ AM, Dalpé Y and Guissou T (1996) Les Glomales d'Acacia holosericea A. Cunn. ex G. Don. et d'Acacia mangium Willd.: Diversité et abondance relative des champignons mycorhiziens à arbuscules dans deux types de sols de la zone Nord et Sud Soudanienne du Burkina Faso. Bois et Forêts des Tropiques 250: 5–18Google Scholar
  4. Bâ AM and Guissou T (1996) Rock phosphate and mycorrhizas effects on growth and nutrient uptake of Faidherbia albida (Del.) in an alkaline sandy soil. Agroforestry Systems 34: 129–137Google Scholar
  5. Bâ AM, Duponnois R, Guissou T, Sanon KB and Dianou D (1997) Mobilization of rock phosphates by soil microorganisms associated with Zizyphus mauritiana Lam. and Vigna unguiculata (L.) Walp. In: Renard G, Neef A, Becker K and von Oppen M (eds) Soil Fertility Management in West African Land Use Systems, pp 79–84. Margraf Verlag, Weikersheim, GermanyGoogle Scholar
  6. Bâ AM, Duponnois R, Danthu P, Diallo I, Guissou T, Sanon KB, Sacko O and Plenchette C (1998) Utilization of rock phosphates by mycorrhizal jujubes. In: ISSS (ed) CD-Rom Proceedings presented at the 16th World Congress of Soil Science, p 21. Montpellier, FranceGoogle Scholar
  7. Bâ AM, Guissou T, Duponnois R, Danthu P, Kondé S, Baba V, Sacko O, Sidibé D and Plenchette C (1999) Controlled mycorrhization of jujubes tree (Zizyphus mauritiana Lam.) to increase the productivity of plantations in West Africa. In: TSBF (ed) Abstracts presented at the Workshop on Tropical Soil Biology, Opportunities and Challenges for African Agriculture, p 12. Nairobi, KenyaGoogle Scholar
  8. Baylis GTS (1970) Root hairs and phycomycetous mycorrhizas in phosphorus-deficient soil. Plant and Soil 33: 713–716Google Scholar
  9. Beaux MF, Gouet H, Gouet JP, Morleghem P, Philippeau G, Tranchefort J and Verneau M (1991) Stat-ITCF, Manuel d'utilisation. ITCF, Céréaliers de FranceGoogle Scholar
  10. Bonkoungou EG, Djimdé M, Ayuk ET, Zoungrana I and Tchoundjeu Z (1998) Taking stock of agroforestry in the Sahel-harvesting results for the future. In: ICRAF (eds) End of Phase Report 1989–1996, pp 1–5. ICRAF, Nairobi, KenyaGoogle Scholar
  11. Declerck S, Plenchette C and Strullu GD (1995) Mycorrhizal dependency of banana (Musa acuminata, AAA group) cultivar. Plant and Soil 176: 183–187Google Scholar
  12. Gianinazzi-Pearson V, Gianinazzi S and Trouvelot A (1985) Evaluation of the infectivity and effectiveness of indigenous vesicular-arbuscular fungal populations in some agricultural soils in Burgundy. Canadian Journal of Botany 63: 1521–1524Google Scholar
  13. Guissou T, Bâ AM and Guinko S (1996) Effect of arbuscular mycorrhizal colonization on drought tolerance of four sahelian woody fruit trees. In: Timothy MS and Thomas B (eds) Abstract presented at the 2nd International Conference on Mycorrhiza (ICOM 2), pp 56–57. Swedish Univresity of Agricultural Sciences, Uppsala, SwedenGoogle Scholar
  14. Guissou T, Bâ AM, Ouadha JM, Guinko S and Duponnois R (1988a) Responses of Parkia biglo-bosa (Jacq.) Benth., Tamarindus indica L. and Zzyphus mauritiana Lam. to arbuscular mycorrhizal fungi in a phosphorus deficient soil. Biology and Fertility of Soils 26: 194–198Google Scholar
  15. Guissou T, Bâ AM, Guinko S, Duponnois R and Plenchette C (1998b) Influence des phos-phates naturels et des mycorhizes à vésicules et à arbuscules sur la croissance et la nutrition minérale de Zizyphus mauritiana Lam. dans un sol à pH alcalin. Annales des Sciences Forestières 55: 925–931Google Scholar
  16. Habte M and Manajunath A (1991). Categories of vesicular-arbuscular mycorrhizal dependency of host species. Mycorrhiza 1: 3–12Google Scholar
  17. Habte M and Byappandahalli MN (1994) Dependency of cassava (Manihot esculenta Crantz) on vesicular-arbuscular mycorrhizal fungi. Mycorrhiza 4: 241–245Google Scholar
  18. Hetrick BAD, Wilson GWT and Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Canadian Journal of Botany 70: 2032–2040Google Scholar
  19. John MK (1970) Colorimetric determination in soil and plant material with ascorbic acid. Soil Science 68: 171–177Google Scholar
  20. Kormanik PP and McGraw AC (1982) Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: Schenck NC (ed): Methods and Principles of Mycorrhizal Research, pp 37–45. The American Phytopathological Society, Saint-PaulGoogle Scholar
  21. Nair PKR (1998) Directions in tropical agroforestry research: past, present, and future. Agroforestry Systems 38: 223–245Google Scholar
  22. Plenchette C, Fortin JA and Furlan V (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. I. Mycorrhizal dependency under field condi-tions. Plant and Soil 70: 199–209Google Scholar
  23. Ravnskov S and Jakobsen I (1995) Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytologist 129: 611–618Google Scholar
  24. Schweiger PF, Robson AD and Barrow NJ (1995) Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species. New Phytologist 131: 247–254Google Scholar
  25. Schweiger PF, Thingstrup I and Jakobsen I (1999) Comparison of two test systems for mea-suring plant phosphorus uptake via arbuscular mycorrhizal fungi. Mycorrhiza 8: 207–213Google Scholar
  26. Smith SE and Read DJ (1997) Mycorrhizal symobiosis. Academic Press, second edition, 605 ppGoogle Scholar
  27. Thomson BD, Grove TS, Malajczuk N and Hardy GES t J (1994) The effectiveness of ectomyc-orrhizal fungi in increasing the growth of Eucalyptus globulus Labill. in relation to root colonization and hyphal development in soil. New Phytologist 126: 517–524Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • A. M. Bâ
    • 1
    Email author
  • C. Plenchette
    • 2
  • P. Danthu
    • 1
    • 3
  • R. Duponnois
    • 4
  • T. Guissou
    • 5
  1. 1.CNRF/ISRADakarSénégal
  2. 2.Station d'Agronomie/INRADijon CedexFrance
  3. 3.CIRAD-ForêtDakarSénégal
  4. 4.Bio-Pédologie/IRDDakarSénégal
  5. 5.DPF/INERAOuagadougouBurkina Faso

Personalised recommendations