Plant Molecular Biology

, Volume 43, Issue 2–3, pp 387–399 | Cite as

Genetic and epigenetic interactions in allopolyploid plants

  • Luca Comai


Allopolyploid plants are hybrids that contain two copies of the genome from each parent. Whereas wild and cultivated allopolyploids are well adapted, man-made allopolyploids are typically unstable, displaying homeotic transformation and lethality as well as chromosomal rearrangements and changes in the number and distribution of repeated DNA sequences within heterochromatin. Large increases in the length of some chromosomes has been documented in allopolyploid hybrids and could be caused by the activation of dormant retrotransposons, as shown to be the case in marsupial hybrids. Synthetic (man-made) allotetraploids of Arabidopsis exhibit rapid changes in gene regulation, including gene silencing. These regulatory abnormalities could derive from ploidy changes and/or incompatible interactions between parental genomes, although comparison of auto- and allopolyploids suggests that intergenomic incompatibilities play the major role. Models to explain intergenomic incompatibilities incorporate both genetic and epigenetic mechanisms. In one model, the activation of heterochromatic transposons (McClintock's genomic shock) may lead to widespread perturbation of gene expression, perhaps by a silencing interaction between activated transposons and euchromatic genes. Qualitatively similar responses, of lesser intensity, may occur in intraspecific hybrids. Therefore, insight into genome function gained from the study of allopolyploidy may be applicable to hybrids of any type and may even elucidate positive interactions, such as those responsible for hybrid vigor.

chromosome evolution gene silencing heterochromatin interspecific hybridization recombination transposons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allard, R.W. 1960. Principles of Plant Breeding, Wiley, New York, 485 pp.Google Scholar
  2. Allard, R.W., Garcia, P., Saenz-de-Miera, L.E. and Perez de la Vega, M. 1993. Evolution of multilocus genetic structure in Avena hirtula and Avena barbata. Genetics 135: 1125–1139.PubMedGoogle Scholar
  3. Aragon-Alcaide, L., Reader, S., Miller, T. and Moore, G. 1997. Centromeric behaviour in wheat with high and low homoeologous chromosomal pairing. Chromosoma 106: 327–333.PubMedGoogle Scholar
  4. Bachem, C.W.B. et al. 1996. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J. 9: 745–753.PubMedGoogle Scholar
  5. Bailis, A.M. and Rothstein, R. 1990. A defect in mismatch repair in Saccharomyces cerevisiae stimulates ectopic recombination between homeologous genes by an excision repair dependent process. Genetics 126: 535–547.PubMedGoogle Scholar
  6. Baulcombe, D. 1999. Viruses and gene silencing in plants. Arch. Virol. Suppl. 15: 189–201.PubMedGoogle Scholar
  7. Bender, J. and Fink, G.R. 1995. Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell 83: 725–734.PubMedGoogle Scholar
  8. Bestor, T.H. 1990. DNA methylation: evolution of a bacterial immune function into a regulator of gene expression and genome structure in higher eukaryotes. Phil. Trans. R. Soc. Lond. B Biol. Sci. 326: 179–187.Google Scholar
  9. Boisselier Dubayle, M.C., Lambourdière, J. and Bischler, H. 1996. Progeny analysis by isozyme markers in the polyploid liverwort Plagiochasma rupestre. Can. J. Bot. 74: 521–527.Google Scholar
  10. Brink, R.A., Styles, E.D. and Axtell, J.D. 1968. Paramutation: directed genetic change. Paramutation occurs in somatic cells and heritably alters the functional state of a locus. Science 159: 161–170.PubMedGoogle Scholar
  11. Buckler, E.S. et al. 1999. Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153: 415–426.PubMedGoogle Scholar
  12. Burns, J. and Gerstel, D. 1967. Flower color variegation and instability of a block of heterochromatin in Nicotiana. Genetics 57: 155–167.Google Scholar
  13. Chambers, S.R., Hunter, N., Louis, E.J. and Borts, R.H., 1996. The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss. Mol. Cell Biol. 16: 6110–6120.PubMedGoogle Scholar
  14. Chen, Z.J., Comai, L. and Pikaard, C.S. 1998. Gene dosage and stochastic effects determine the severity and direction of uniparental ribosomal RNA gene silencing (nucleolar dominance) in Arabidopsis allopolyploids. Proc. Natl. Acad. Sci. USA 95: 14891–14896.PubMedGoogle Scholar
  15. Clausen, R. and Goodspeed, T. 1925. Interspecific hybridization in Nicotiana. II. A tetraploid glutinosa-tabacum hybrid, an experimental verification of the Winge's hypothesis. Univ. Calif. Pub. Bot. 11: 245–256.Google Scholar
  16. Claverys, J.P., Mejean, V., Gasc, A.M. and Sicard, A.M., 1983. Mismatch repair in Streptococcus pneumoniae: relationship between base mismatches and transformation efficiencies. Proc. Natl. Acad. Sci. USA 80: 5956–5960.PubMedGoogle Scholar
  17. Comai, L., Tyagi, A.P., Winter, K., Holmes-Davis, R., Reynolds, S., Stevens, Y. and Byers, B. 2000. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12 (in press)Google Scholar
  18. Cronn, R.C., Small, R.L. and Wendel, J.F. 1999. Duplicated genes evolve independently after polyploid formation in cotton. Proc. Natl. Acad. Sci. USA 96: 14406–14411.PubMedGoogle Scholar
  19. D'Hont, A. et al. 1994. A molecular approach to unraveling the genetics of sugarcane, a complex polyploid of the Andropogoneae tribe. Genome 37: 222–230.Google Scholar
  20. Digby, L., 1912. The citology of Primula kewensis and of other related Primula hybrids. Ann. Bot. 26: 357–388.Google Scholar
  21. Dobzhansky, T. 1937. Genetics and the Origin of Species. Columbia University Press, New York.Google Scholar
  22. Endo, T.R. 1990. Gametocidal chromosomes and their induction of chromosome mutations in wheat. Jpn. J. Genet. 65: 135–152.Google Scholar
  23. Feldman, M. et al. 1997. Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147: 1381–1387.PubMedGoogle Scholar
  24. Finnegan, E.J., Peacock, W.J. and Dennis, E.S. 1996. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc. Natl. Acad. Sci. USA 93: 8449–8454.PubMedGoogle Scholar
  25. Fishel, R. and Kolodner, R.D. 1995. Identification of mismatch repair genes and their role in the development of cancer. Curr. Opin. Genet. Dev. 5: 382–395.PubMedGoogle Scholar
  26. Flavell, A.J., Pearce, S.R. and Kumar, A. 1994. Plant transposable elements and the genome. Curr. Opin. Genet. Dev. 4: 838–844.PubMedGoogle Scholar
  27. Flavell, R.B. 1994. Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc. Natl. Acad. Sci. USA 91: 3490–3496.PubMedGoogle Scholar
  28. Galitski, T., Saldanha, A.J., Styles, C.A., Lander, E.S. and Fink, G.R. 1999. Ploidy regulation of gene expression. Science 285: 251–254.CrossRefPubMedGoogle Scholar
  29. Gastony, G.J. 1991. Gene silencing in a polyploid homosporous fern: paleopolyploidy revisited. Proc. Natl. Acad. Sci. USA 88: 1602–1605.PubMedGoogle Scholar
  30. Gerstel, D.U. and Burns, J.A. 1967. Phenotypic and chromosomal abnormalities associated with the introduction of heterochromatin from Nicotiana otophora into N. tabacum. Genetics 56: 483–502.Google Scholar
  31. Grant, V. 1956. The genetic structure of races and species in Gilia. Adv. Genet. 8: 89–107.Google Scholar
  32. Guo, M., Davis, D. and Birchler, J.A. 1996. Dosage effects on gene expression in a maize ploidy series. Genetics 142: 1349–1355.PubMedGoogle Scholar
  33. Gutierrez, J.F., Vaquero, F. and Vences, F.J. 1994. Allopolyploid vs. autopolyploid origins in the genus Lathyrus (Leguminosae). Heredity 73: 29–40.Google Scholar
  34. Hanfstingl, U. et al. 1994. Haplotypic divergence coupled with lack of diversity at the Arabidopsis thaliana alcohol dehydrogenase locus: roles for both balancing and directional selection? Genetics 138: 811–828.Google Scholar
  35. Hart, G.E. 1983. Genetics and evolution of multilocus isozymes in hexaploid wheat. In: Isozymes: Current Topics in Biological and Medical Research, Alan R. Liss, New York, pp. 365.Google Scholar
  36. Henikoff, S. and Comai, L. 1998a. A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis. Genetics 149: 307–318.PubMedGoogle Scholar
  37. Henikoff, S. and Comai, L. 1998b. Trans-sensing effects: the ups and downs of being together. Cell 93: 329–332.PubMedGoogle Scholar
  38. Hepburn, A.G., Clarke, L.E., Pearson, L. and White, J. 1983. The role of cytosine methylation in the control of nopaline synthase gene expression in a plant tumor. J. Mol. Appl. Genet. 2: 315–329.PubMedGoogle Scholar
  39. Heslop-Harrison, J.S. 1990. Gene expression and parental dominance in hybrid plants. Development Suppl. 1990: 21–28.Google Scholar
  40. Hollick, J.B., Dorweiler, J.E. and Chandler, V.L. 1997. Paramutation and related allelic interactions. Trends Genet. 13: 302–308.PubMedGoogle Scholar
  41. Humbert, O., Prudhomme, M., Hakenbeck, R., Dowson, C.G. and Claverys, J.P. 1995. Homeologous recombination and mismatch repair during transformation in Streptococcus pneumoniae: saturation of the Hex mismatch repair system. Proc. Natl. Acad. Sci. USA 92: 9052–9056.PubMedGoogle Scholar
  42. Hunter, N., Chambers, S.R., Louis, E.J. and Borts, R.H. 1996. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO J. 15: 1726–1733.PubMedGoogle Scholar
  43. Jacobsen, S.E. and Meyerowitz, E.M. 1997. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277: 1100–1103.PubMedGoogle Scholar
  44. Jeddeloh, J.A., Bender, J. and Richards, E.J. 1998. The DNA methylation locus DDM1 is required for maintenance of gene silencing in Arabidopsis. Genes Dev. 12: 1714–1725.PubMedGoogle Scholar
  45. Jiang, C., Wright, R.J., El-Zik, K.M. and Paterson, A.H. 1998. Polyploid formation created unique avenues for response to selection in Gossypium. Proc. Natl. Acad. Sci. USA 95: 4419–4424.PubMedGoogle Scholar
  46. Jiricny, J. 1998. Eukaryotic mismatch repair: an update. Mutat. Res. 409: 107–121.PubMedGoogle Scholar
  47. Jurka, J. 1998. Repeats in genomic DNA: mining and meaning. Curr. Opin. Struct. Biol. 8: 333–337.PubMedGoogle Scholar
  48. Kakutani, T., Jeddeloh, J.A., Flowers, S.K., Munakata, K. and Richards, E.J. 1996. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc. Natl. Acad. Sci. USA 93: 12406–12411.PubMedGoogle Scholar
  49. Kamm, A., Galasso, I., Schmidt, T. and Heslop-Harrison, J.S. 1995. Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species. Plant Mol. Biol. 27: 853–862.PubMedGoogle Scholar
  50. Karpechenko, G.D. 1927. Polyploid hybrids of Raphanus sativus x Brassica oleracea L. Bull. Appl. Bot. 17: 305–408.Google Scholar
  51. Kehr, A.E. and Smith, H.H. 1954. Genetic tumors in Nicotiana hybrids, Brookhaven National Laboratory Symposia, vol. 6, Brookhaven National Laboratory, Upton, NY, pp. 55–78.Google Scholar
  52. Kolodner, R.D. and Marsischky, G.T. 1999. Eukaryotic DNA mismatch repair. Curr. Opin. Genet. Dev. 9: 89–96.PubMedGoogle Scholar
  53. Leitch, I.J. and Bennett, M.D. 1997. Polyploidy in angiosperms. Trends Plant Sci. 2: 470–476.Google Scholar
  54. Liu, B. et al. 1998. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences. Genome 41: 272–277.Google Scholar
  55. Luo, M.-C., Dubcosvky, J. and Dvorak, J. 1996. Recognition of homeology by the wheat Ph1 locus. Genetics 144: 1195–1203.PubMedGoogle Scholar
  56. Mac Key, J. 1958. Mutagenic response in Triticum at different levels of ploidy, First Int. Wheat Genetics Symposium, Public Press, Winnipeg, Canada, pp. 88.Google Scholar
  57. Martienssen, R. 1998a. Chromosomal imprinting in plants. Curr. Opin. Genet. Dev. 8: 240–244.PubMedGoogle Scholar
  58. Martienssen, R. 1998b. Transposons, DNA methylation and gene control. Trends Genet. 14: 263–264.PubMedGoogle Scholar
  59. Marubashi, W., Yamada, T. and Niwa, M. 1999. Apoptosis detected in hybrids between Nicotiana glutinosa and N. repanda expressing lethality. Planta 210: 168–171.PubMedGoogle Scholar
  60. Matzke, M., Matzke, A. and Eggleston, W. 1966. Paramutation and transgene silencing: a common response to invasive DNA? Trends Plant Sci. 1: 382–388.Google Scholar
  61. Matzke, M.A. and Matzke, A.J. 1998a. Epigenetic silencing of plant transgenes as a consequence of diverse cellular defence responses. Cell. Mol. Life Sci. 54: 94–103.PubMedGoogle Scholar
  62. Matzke, M.A. and Matzke, A.J. 1998b. Gene silencing in plants: relevance for genome evolution and the acquisition of genomic methylation patterns. Novartis Found. Symp. 214: 168–180.PubMedGoogle Scholar
  63. Matzke, M.A., Mittelsten Scheid, O. and Matzke, A.J. 1999. Rapid structural and epigenetic changes in polyploid and aneuploid genomes. Bioessays 21: 761–767.PubMedGoogle Scholar
  64. McClintock, B. 1965. The control of gene action in maize, Brookhaven National Laboratory Symposia, vol. 18, Brookhaven National Laboratory, Upton, NY, pp. 162–184.Google Scholar
  65. McClintock, B. 1984. The significance of responses of the genome to challenge. Science 226: 792–801.Google Scholar
  66. Meinke, D.W. 1994. Seed development in Arabidopsis thaliana. In: E.M. Meyerowitz and C.R. Somerville (Eds.) Arabidopsis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 253–295.Google Scholar
  67. Meyer, V.G. 1970. A facultative gymnosperm from an interspecific cotton hybrid. Science 169: 886–888.Google Scholar
  68. Mikhailova, E.I. et al. 1998. The effect of the wheat Ph1 locus on chromatin organisation and meiotic chromosome pairing analysed by genome painting. Chromosoma 107: 339–350.PubMedGoogle Scholar
  69. Mittelsten Scheid, O., Jakovleva, L., Afsar, K., Maluszynska, J. and Paszkowski, J. 1996. A change of ploidy can modify epigenetic silencing. Proc. Natl. Acad. Sci. USA 93: 7114–7119.PubMedGoogle Scholar
  70. Modrich, P. and Lahue, R. 1996. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem. 65: 101–133.PubMedGoogle Scholar
  71. Moore, G. 1998. To pair or not to pair: chromosome pairing and evolution. Curr. Opin. Plant Biol. 1: 116–122.PubMedGoogle Scholar
  72. O'Kane, S.R.J., Schaal, B.A. and Al-Shehbaz, I.A. 1996. The origins of Arabidopsis suecica (Brassicaceae) as indicated by nuclear rDNA sequences. Syste. Bot. 21: 559–566.Google Scholar
  73. O'Neill, R.J., O'Neill, M.J. and Graves, J.A. 1998. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393: 68–72.PubMedGoogle Scholar
  74. Odrzykoski, I.J., Chudzinska, E. and Szweykowski, J. 1996. The hybrid origin of the polyploid liverwort Pellia borealis. Genetica 98: 75–86.Google Scholar
  75. Ohno, S. 1970. Evolution by Gene Duplication, Springer-Verlag, Heidelberg, Germany.Google Scholar
  76. Petit, M.A., Dimpfl, J., Radman, M. and Echols, H. 1991. Control of large chromosomal duplications in Escherichia coli by the mismatch repair system. Genetics 129: 327–332.PubMedGoogle Scholar
  77. Pichersky, E., Soltis, D. and Soltis, P. 1990. Defective chlorophyll a/b-binding protein genes in the genome of a homosporous fern. Proc. Natl. Acad. Sci. USA 87: 195–199.PubMedGoogle Scholar
  78. Prolla, T.A. 1998. DNA mismatch repair and cancer. Curr. Opin. Cell Biol. 10: 311–316.PubMedGoogle Scholar
  79. Prudhomme, M., Mejean, V., Martin, B. and Claverys, J.P. 1991. Mismatch repair genes of Streptococcus pneumoniae: HexA confers a mutator phenotype in Escherichia coli by negative complementation. J. Bact. 173: 7196–7203.PubMedGoogle Scholar
  80. Ramsey, J. and Schemske, D.W. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 19: 467–501.Google Scholar
  81. Rayssiguier, C., Thaler, D.S. and Radman, M. 1989. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342: 396–401.PubMedGoogle Scholar
  82. Rhoades, M.M. 1942. Preferential segregation in maize. Genetics 27: 395–407.Google Scholar
  83. Rieseberg, L.H. and Noyes, R.D. 1998. Genetic map-based studies of reticulate evolution in plants. Trends Plant Sci. 3: 254–259.Google Scholar
  84. Rieseberg, L.H. and Soltis, D.E. 1989. Assessing the utility of isozyme number for determining ploidal level: evidence from Helianthus and Heliomeris (Asteraceae). Aliso 12: 277–286.Google Scholar
  85. Ronemus, M.J., Galbiati, M., Ticknor, C., Chen, J. and Dellaporta, S.L. 1996. Demethylation-induced developmental pleiotropy in Arabidopsis. Science 273: 654–657.PubMedGoogle Scholar
  86. Schwanitz, F. 1957. Spornbildung bei einem Bastard zwischen drei Digitalis-Arten. Biol. Zentralbl. 76: 226–231.Google Scholar
  87. Scott, R.J., Spielman, M., Bailey, J. and Dickinson, H.G. 1998. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125: 3329–3341.PubMedGoogle Scholar
  88. Sears, E.R. 1976. Genetic control of chromosome pairing in wheat. Annu. Rev. Genet. 10: 31–51.PubMedGoogle Scholar
  89. Selva, E.M., New, L., Crouse, G.F. and Lahue, R.S. 1995. Mismatch correction acts as a barrier to homeologous recombination in Saccharomyces cerevisiae. Genetics 139: 1175–1188.PubMedGoogle Scholar
  90. Small, R.L., Ryburn, J.A. and Wendel, J.F. 1999. Low levels of nucleotide diversity at homoeologous Adh loci in allotetraploid cotton (Gossypium L.). Mol. Biol. Evol. 16: 491–501.PubMedGoogle Scholar
  91. Soltis, D.E. and Soltis, P.S. 1993. Molecular data and the dynamic nature of polyploidy. Crit. Rev. Plant Sci. 12: 243–273.Google Scholar
  92. Soltis, D.E. and Soltis, P.S. 1995. The dynamic nature of polyploid genomes. Proc. Natl. Acad. Sci. USA 92: 8089–8091.PubMedGoogle Scholar
  93. Song, K., Lu, P., Tang, K. and Osborn, T.C. 1995. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc. Natl. Acad. Sci. USA 92: 7719–7723.PubMedGoogle Scholar
  94. Song, K. and Osborn, T.C. 1994. A method for examining expression of homologous genes in plant polyploids. Plant Mol. Biol. 26: 1065–1071.PubMedGoogle Scholar
  95. Stadler, I.J. 1929. Chromosome number and the mutation rate in Avena and Triticum. Proc. Natl. Acad. Sci. USA 15: 876–881.Google Scholar
  96. Ungerer, M.C., Baird, S.J., Pan, J. and Rieseberg, L.H. 1998. Rapid hybrid speciation in wild sunflowers. Proc. Natl. Acad. Sci. USA 95: 11757–11762.PubMedGoogle Scholar
  97. van Buuren, M., Neuhaus, J.M., Shinshi, H., Ryals, J. and Meins, F., Jr. 1992. The structure and regulation of homeologous tobacco endochitinase genes of Nicotiana sylvestris and N. tomentosiformis origin. Mol. Gen. Genet. 232: 460–469.PubMedGoogle Scholar
  98. Vaucheret, H., Vincentz, M., Kronenberger, J., Caboche, M. and Rouze, P. 1989. Molecular cloning and characterisation of the two homologous genes coding for nitrate reductase in tobacco. Mol. Gen. Genet. 216: 10–15.PubMedGoogle Scholar
  99. Vega, J.M. and Feldman, M. 1998a. Effect of the pairing gene Ph1 and premeiotic colchicine treatment on intra-and interchromosome pairing of isochromosomes in common wheat. Genetics 150: 1199–1208.PubMedGoogle Scholar
  100. Vega, J.M. and Feldman, M. 1998b. Effect of the pairing gene Ph1 on centromere misdivision in common wheat. Genetics 148: 1285–1294.PubMedGoogle Scholar
  101. Volkov, R.A., Borisjuk, N.V., Panchuk, II, Schweizer, D. and Hemleben, V. 1999. Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Mol. Biol. Evol. 16: 311–320.PubMedGoogle Scholar
  102. Wendel, J.F., Schnabel, A. and Seelanan, T. 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc. Natl. Acad. Sci. USA 92: 280–284.PubMedGoogle Scholar
  103. Wessler, S.R., Bureau, T.E. and White, S.E. 1995. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr. Opin. Genet. Dev. 5: 814–821.PubMedGoogle Scholar
  104. Whitkus, R., Doebley, J. and Lee, M. 1992. Comparative genome mapping of Sorghum and maize. Genetics 132: 1119–1130.PubMedGoogle Scholar
  105. Winge, O. 1917. The chromosomes, their number and general importance. C.R. Trav. Lab. Carlsberg 13: 131–275.Google Scholar
  106. Wirth, T., Gloggler, K., Baumruker, T., Schmidt, M. and Horak, I. 1983. Family of middle repetitive DNA sequences in the mouse genome with structural features of solitary retroviral long terminal repeats. Proc. Natl. Acad. Sci. USA 80: 3327–3330.PubMedGoogle Scholar
  107. Wolffe, A.P. and Matzke, M.A. 1999. Epigenetics: regulation through repression. Science 286: 481–486.PubMedGoogle Scholar
  108. Yu, H.G., Hiatt, E.N., Chan, A., Sweeney, M. and Dawe, R.K. 1997. Neocentromere-mediated chromosome movement in maize. J. Cell Biol. 139: 831–840.PubMedGoogle Scholar
  109. Zhao, X.P. et al., 1998. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Res. 8: 479–492.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Luca Comai
    • 1
  1. 1.Department of BotanyUniversity of WashingtonSeattleUSA

Personalised recommendations