Journal of Neuro-Oncology

, Volume 50, Issue 1–2, pp 99–108 | Cite as

Vascular Microenvironment in Gliomas

  • Peter Vajkoczy
  • Michael D. Menger


Structural and functional abnormalities of the vascular microenvironment determine pathophysiological characteristics of gliomas, such as loss of blood–brain barrier function, tumor cell invasiveness, or permselectivity for large molecules. Moreover, the effectiveness of various therapeutic strategies critically depends upon the successful transvascular delivery of molecules. In order to shed more light on the vascular microenvironment in gliomas, a variety of experimental and clinical techniques have been applied to study the glioma microvasculature, including histology, vascular corrosion casts, microangiography by injection of dyes, blood flow measurements by autoradiography, tracer washout techniques, magnetic resonance imaging, as well as intravital fluorescence microscopy. This review summarizes the characteristic features of vascular morphology, angio-architecture, tumor perfusion, microvascular permeability, as well as microvessel-related immunological competence in gliomas. An improved understanding of the vascular microenvironment in gliomas will help in the future to optimize glioma imaging and delivery of vectors for gene therapy or encapsulated drug carriers in patients.

brain tumor vessels endothelial cells pericytes perfusion micorcirculation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Valtonen S, Timonen U, Toivanen P, Kalimo H, Kivipelto L, Heiskanen O, Unsgaard G, Kuurne T: Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurgery 41: 44-48, 1997Google Scholar
  2. 2.
    Nelson DF, Curran WJ Jr, Scott C, Nelson JS, Weinstein AS, Ahmad K, Constine LS, Murray K, Powlis WD, Mohiuddin M et al.: Hyperfractionated radiation therapy and bis-chlorethyl nitrosourea in the treatment of malignant glioma-possible advantage observed at 72.0 Gy in 1.2 Gy B.I.D. fractions: report of the Radiation Therapy Oncology Group Protocol 8302. Int J Radiat Oncol Biol Phys 25: 193-207, 1993Google Scholar
  3. 3.
    Cox DJ, Pilkington GJ, Lantos PL: The fine structure of blood vessels in ethylnitrosourea-induced tumours of the rat nervous system: with special reference to the breakdown of the blood-brain barrier. Br J Exp Pathol 57: 419-430, 1976Google Scholar
  4. 4.
    Goldbrunner RH, Bernstein JJ, Tonn JC: Cell-extracellular matrix interaction in glioma invasion. Acta Neurochir (Wien) 141: 295-305, 1999Google Scholar
  5. 5.
    Vajkoczy P, Goldbrunner R, Farhadi M, Vince G, Schilling L, Tonn JC, Schmiedek P, Menger MD: Glioma cell migration is associated with glioma-induced angiogenesis in vivo. Int J Dev Neurosci 17: 557-563, 1999Google Scholar
  6. 6.
    Schlageter KE, Molnar P, Lapin GD, Groothuis DR: Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res 58: 312-328, 1999Google Scholar
  7. 7.
    Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK: Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95: 4607-4612, 1998Google Scholar
  8. 8.
    Bedford JS, Mitchell JB: The effect of hypoxia on the growth and radiation response of mammalian cells in culture. Br J Radiol 47: 687-696, 1974Google Scholar
  9. 9.
    Jones DP: Hypoxia and drug metabolism. Biochem Pharmacol 30: 1019-1023, 1981Google Scholar
  10. 10.
    Jain RK: Transport of molecules in the tumor interstitium: a review. Cancer Res 47: 3039-3051, 1987Google Scholar
  11. 11.
    Jain RK: Determinants of tumor blood flow: a review. Cancer Res 48: 2641-2658, 1988Google Scholar
  12. 12.
    Vaupel P, Kallinowski F, Okunieff P: Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49: 6449-6465, 1989Google Scholar
  13. 13.
    Rainov NG, Ikeda K, Qureshi NH, Grover S, Herrlinger U, Pechan P, Chiocca EA, Breakefield XO, Barnett FH: Intraarterial delivery of adenovirus vectors and liposome-DNA complexes to experimental brain neoplasms. Hum Gene Ther 10: 311-318, 1999Google Scholar
  14. 14.
    Plate KH, Risau W: Angiogenesis in malignant gliomas. Glia 15: 339-347, 1995Google Scholar
  15. 15.
    Brem S, Cotran R, Folkman J: Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst 48: 347-356, 1972Google Scholar
  16. 16.
    Wesseling P, van der Laak JA, de Leeuw H, Ruiter DJ, Burger PC: Computer-assisted analysis of the microvasculature in untreated glioblastomas. J Neuro-Oncol 24: 83-85, 1995Google Scholar
  17. 17.
    Daumas-Duport C, Scheithauer B, O'Fallon J, Kelly P: Grading of astrocytomas. A simple and reproducible method. Cancer 62: 2152-2165, 1988Google Scholar
  18. 18.
    Leon SP, Folkerth RD, Black PM: Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 77: 362-372, 1996Google Scholar
  19. 19.
    Schiffer D, Chio A, Giordana MT, Leone M, Soffietti R: Prognostic value of histologic factors in adult cerebral astrocytoma. Cancer 61: 1386-1393, 1988Google Scholar
  20. 20.
    Zama A, Tamura M, Inoue HK: Three-dimensional observations on microvascular growth in rat glioma using a vascular casting method. J Cancer Res Clin Oncol 117: 396-402, 1991Google Scholar
  21. 21.
    Orita T, Nishizaki T, Kamiryo T, Aoki H, Harada K, Okamura T: The microvascular architecture of human malignant glioma. A scanning electron microscopic study of a vascular cast. Acta Neuropathol (Berl) 76: 270-274, 1988Google Scholar
  22. 22.
    Stewart PA, Farrell CL, Del Maestro RF: The effect of cellular microenvironment on vessels in the brain. Part 1: Vessel structure in tumour, peritumour and brain from humans with malignant glioma. Int J Radiat Biol 60: 125-130, 1991Google Scholar
  23. 23.
    Ekelund L, Jonsson N, Lunderquist A: Tumor vessels. Angiographic-histopathologic correlation. Radiologe 17: 95-102, 1977Google Scholar
  24. 24.
    Scatliff JH, Radcliffe WB, Pittman HH, Park CH: Vascular structures of glioblastoma. Am J Roentgenol 105: 795-805, 1969Google Scholar
  25. 25.
    Bernsen HJ, Rijken PF, Oostendorp T, van der Kogel AJ: Vascularity and perfusion of human gliomas xenografted in the athymic nude mouse. Br J Cancer 71: 721-726, 1995Google Scholar
  26. 26.
    Whittle IR, Collins F, Kelly PA, Ritchie I, Ironside JW: Nitric oxide synthase is expressed in experimental malignant glioma and influences tumour blood flow. Acta Neurochir (Wien) 138: 870-875, 1996Google Scholar
  27. 27.
    Yamada K, Hayakawa T, Ushio Y, Arita N, Kato A, Mogami H: Regional blood flow and capillary permeability in the ethylnitrosourea-induced rat glioma. J Neurosurg 55: 922-928, 1981Google Scholar
  28. 28.
    Abramovitch R, Meir G, Neeman M: Neovascularization induced growth of implanted C6 glioma multicellular spheroids: magnetic resonance microimaging. Cancer Res 55: 1956-1962, 1995Google Scholar
  29. 29.
    Machein MR, Kullmer J, Fiebich BL, Plate KH, Warnke PC: Vascular endothelial growth factor expression, vascular volume, and capillary permeability in human brain tumors. Neurosurgery 44: 732-740, 1999Google Scholar
  30. 30.
    Vajkoczy P, Ullrich A, Menger MD: Intravital fluorescence videomicroscopy to study tumor angiogenesis and microcirculation. Neoplasia (in press) 2000Google Scholar
  31. 31.
    Dvorak HF, Brown LF, Detmar M, Dvorak AM: Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146: 1029-1039, 1995Google Scholar
  32. 32.
    Patan S, Munn LL, Jain RK: Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis. Microvasc Res 51: 260-272, 1996Google Scholar
  33. 33.
    Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ: Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284: 1994-1998, 1999Google Scholar
  34. 34.
    Vajkoczy P, Schilling L, Ullrich A, Schmiedek P, Menger MD: Characterization of angiogenesis and microcirculation of high-grade glioma: an intravital multifluorescence microscopic approach in the athymic nude mouse. J Cereb Blood Flow Metab 18: 510-520, 1998Google Scholar
  35. 35.
    Vajkoczy P, Menger MD, Vollmar B, Schilling L, Schmiedek P, Hirth KP, Ullrich A, Fong TAT: Inhibition of tumor growth, angiogenesis, and microcirculation by the novel Flk-1 inhibitor SU5416 as assessed by intravital multi-fluorescence videomicroscopy. Neoplasia 1: 31-41, 1999Google Scholar
  36. 36.
    Stewart PA, Hayakawa K, Hayakawa E, Farrell CL, Del Maestro RF: A quantitative study of blood-brain barrier permeability ultrastructure in a new rat glioma model. Acta Neuropathol (Berl) 67: 96-102, 1985Google Scholar
  37. 37.
    Vick NA, Bigner DD: Microvascular abnormalities in virally-induced canine brain tumors. Structural bases for altered blood-brain barrier function. J Neurol Sci 17: 29-39, 1972Google Scholar
  38. 38.
    Waggener JD, Beggs JL: Vasculature of neural neoplasms. Adv Neurol 15: 27-49, 1976Google Scholar
  39. 39.
    Deane BR, Lantos PL: The vasculature of experimental brain tumours. Part 2. A quantitative assessment of morphological abnormalities. J Neurol Sci 49: 67-77, 1981Google Scholar
  40. 40.
    Shibata S: Ultrastructure of capillary walls in human brain tumors. Acta Neuropathol (Berl) 78: 561-571, 1989Google Scholar
  41. 41.
    Balabanov R, Dore-Duffy P: Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res 53: 637-644, 1998Google Scholar
  42. 42.
    Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E: Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103: 159-165, 1999Google Scholar
  43. 43.
    Wesseling P, Schlingemann RO, Rietveld FJ, Link M, Burger PC, Ruiter DJ: Early and extensive contribution of pericytes/vascular smooth muscle cells to microvascular proliferation in glioblastoma multiforme: an immuno-light and immuno-electron microscopic study. J Neuropathol Exp Neurol 54: 304-310, 1995Google Scholar
  44. 44.
    Endrich B, Intaglietta M, Reinhold HS, Gross JF: Hemodynamic characteristics in microcirculatory blood channels during early tumor growth. Cancer Res 39: 17-23, 1979Google Scholar
  45. 45.
    Asaishi K, Endrich B, Gotz A, Messmer K: Quantitative analysis of microvascular structure and function in the amelanotic melanoma A-Mel-3. Cancer Res 41: 1898-1904, 1981Google Scholar
  46. 46.
    Hatva E, Kaipainen A, Mentula P, Jaaskelainen J, Paetau A, Haltia M, Alitalo K: Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors. Am J Pathol 146: 368-378, 1995Google Scholar
  47. 47.
    Deane BR, Lantos PL: The vasculature of experimental brain tumours. Part 1. A sequential light and electron microscope study of angiogenesis. J Neurol Sci 49: 55-66, 1981Google Scholar
  48. 48.
    Heiss JD, Papavassiliou E, Merrill MJ, Nieman L, Knightly JJ, Walbridge S, Edwards NA, Oldfield EH: Mechanism of dexamethasone suppression of brain tumorassociated vascular permeability in rats. Involvement of the glucocorticoid receptor and vascular permeability factor. J Clin Invest 98: 1400-1408, 1996Google Scholar
  49. 49.
    Machein MR, Kullmer J, Ronicke V, Machein U, Krieg M, Damert A, Breier G, Risau W, Plate KH: Differential downregulation of vascular endothelial growth factor by dexamethasone in normoxic and hypoxic rat glioma cells. Neuropathol Appl Neurobiol 25: 104-112, 1999Google Scholar
  50. 50.
    Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Feder J, Connolly DT: Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246: 1309-1312, 1989Google Scholar
  51. 51.
    Guerin C, Wolff JE, Laterra J, Drewes LR, Brem H, Goldstein GW: Vascular differentiation and glucose transporter expression in rat gliomas: effects of steroids. Ann Neurol 31: 481-487, 1992Google Scholar
  52. 52.
    Guerin C, Laterra J, Hruban RH, Brem H, Drewes LR, Goldstein GW: The glucose transporter and blood-brain barrier of human brain tumors. Ann Neurol 28: 758-765, 1990Google Scholar
  53. 53.
    Takamiya Y, Abe Y, Tanaka Y, Tsugu A, Kazuno M, Oshika Y, Maruo K, Ohnishi Y, Sato O, Yamazaki H, Kijima H, Ueyama Y, Tamaoki N, Nakamura M: Murine P-glycoprotein on stromal vessels mediates multidrug resistance in intracerebral human glioma xenografts. Br J Cancer 76: 445-450, 1997Google Scholar
  54. 54.
    Isaka T, Yoshimine T, Maruno M, Kuroda R, Ishii H, Hayakawa T: Altered expression of antithrombotic molecules in human glioma vessels. Acta Neuropathol (Berl) 87: 81-85, 1994Google Scholar
  55. 55.
    Blasberg RG, Kobayashi T, Horowitz M, Rice JM, Groothuis D, Molnar P, Fenstermacher JD: Regional blood flow in ethylnitrosourea-induced brain tumors. Ann Neurol 14: 189-201, 1983Google Scholar
  56. 56.
    Groothuis DR, Pasternak JF, Fischer JM, Blasberg RG, Bigner DD, Vick NA: Regional measurements of blood flow in experimental RG-2 rat gliomas. Cancer Res 43: 3362-3367, 1983Google Scholar
  57. 57.
    Hossman KA, Bloink M: Blood flow and regulation of blood flow in experimental peritumoral edema. Stroke 12: 211-217, 1981Google Scholar
  58. 58.
    Baish JW, Gazit Y, Berk DA, Nozue M, Baxter LT, Jain RK: Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolation-based network model. Microvasc Res 51: 327-346, 1996Google Scholar
  59. 59.
    Yuan F, Salehi HA, Boucher Y, Vasthare US, Tuma RF, Jain RK: Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res 54: 4564-4568, 1994Google Scholar
  60. 60.
    Hardebo JE, Kahrstrom J, Salford LG: Lack of neural control and reactivity to vasoactive agents in malignant glioma arteries. J Neurosurg 74: 633-635, 1991Google Scholar
  61. 61.
    Panther LA, Baumbach GL, Bigner DD, Piegors D, Groothuis DR, Heistad DD: Vasoactive drugs produce selective changes in flow to experimental brain tumors. Ann Neurol 18: 712-715, 1985Google Scholar
  62. 62.
    Feinstein DL, Galea E, Roberts S, Berquist H, Wang H, Reis DJ: Induction of nitric oxide synthase in rat C6 glioma cells. J Neurochem 62: 315-321, 1994Google Scholar
  63. 63.
    Bakshi A, Nag TC, Wadhwa S, Mahapatra AK, Sarkar C: The expression of nitric oxide synthases in human brain tumours and peritumoral areas. J Neurol Sci 155: 196-203, 1998Google Scholar
  64. 64.
    Stiles JD, Ostrow PT, Balos LL, Greenberg SJ, Plunkett R, Grand W, Heffner RR Jr: Correlation of endothelin-1 and transforming growth factor beta 1 with malignancy and vascularity in human gliomas. J Neuropathol Exp Neurol 56: 435-439, 1997Google Scholar
  65. 65.
    Bearer EL, Orci L: Endothelial fenestral diaphragms: a quick-freeze, deep-etch study. J Cell Biol 100: 418-428, 1985Google Scholar
  66. 66.
    Kohn S, Nagy JA, Dvorak HF, Dvorak AM: Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels. Lab Invest 67: 596-607, 1992Google Scholar
  67. 67.
    Feng D, Nagy JA, Hipp J, Dvorak HF, Dvorak AM: Vesiculo-vacuolar organelles and the regulation of venule permeability to macromolecules by vascular permeability factor, histamine, and serotonin. J Exp Med 183: 1981-1986, 1996Google Scholar
  68. 68.
    von Andrian UH, Arfors KE: Neutrophil-endothelial cell interactions in vivo: a chain of events characterized by distinct molecular mechanisms. Agents Actions Suppl 41: 153-164, 1993Google Scholar
  69. 69.
    Springer TA: Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu Rev Physiol 57: 827-872, 1995Google Scholar
  70. 70.
    Menger MD, Vollmar B: Adhesion molecules as determinants of disease: from molecular biology to surgical research. Br J Surg 83: 588-601, 1996Google Scholar
  71. 71.
    Vajkoczy P, Schilling L, Schmiedek P, Menger MD: Glioma angiogenesis and vascularization: significance of leukocyte/edothelium-interaction. J Cerebr Blood Flow Metab 17 (Suppl 1): S179, 1997Google Scholar
  72. 72.
    Morioka T, Baba T, Black KL, Streit WJ: Inflammatory cell infiltrates vary in experimental primary and metastatic brain tumors. Neurosurgery 30: 891-896, 1992Google Scholar
  73. 73.
    Stokkel M, Stevens H, Taphoorn M, Van Rijk P: Differentiation between recurrent brain tumour and post-radiation necrosis: the value of 201Tl SPET versus 18F-FDG PET using a dual-headed coincidence camera-a pilot study. Nucl Med Commun 20: 411-417, 1999Google Scholar
  74. 74.
    Eary JF, Mankoff DA, Spence AM, Berger MS, Olshen A, Link JM, ÓSullivan F, Krohn KA: 2-[C-11]thymidine imaging of malignant brain tumors. Cancer Res 59: 615-621, 1999Google Scholar
  75. 75.
    Nelson SJ, Vigneron DB, Dillon WP: Serial evaluation of patients with brain tumors using volume MRI and 3D 1H MRSI. NMR Biomed 12: 123-138, 1999Google Scholar
  76. 76.
    Tedeschi G, Lundbom N, Raman R, Bonavita S, Duyn JH, Alger JR, Di Chiro G: Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg 87: 516-524, 1997Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Peter Vajkoczy
    • 1
  • Michael D. Menger
    • 2
  1. 1.Department of Neurosurgery, Klinikum MannheimUniversity of HeidelbergMannheim
  2. 2.Institute for Clinical and Experimental SurgeryUniversity of SaarlandHomburg/SaarGermany

Personalised recommendations