Plant Molecular Biology

, Volume 43, Issue 4, pp 419–428 | Cite as

The plantibody approach: expression of antibody genes in plants to modulate plant metabolism or to obtain pathogen resistance

  • Geert De Jaeger
  • Chris De Wilde
  • Dominique Eeckhout
  • Esbjörn Fiers
  • Ann Depicker


Immunomodulation is a molecular technique that allows the interference with cellular metabolism or pathogen infectivity by the ectopic expression of genes encoding antibodies or antibody fragments. In recent years, several reports have proven the value of this tool in plant research for modulation of phytohormone activity and for blocking plant-pathogen infection. Efficient application of the plantibody approach requires different levels of investigation. First of all, methods have to be available to clone efficiently the genes coding for antibodies or antibody fragments that bind the target antigen. Secondly, conditions to obtain high accumulation of antigen-binding antibodies and antibody fragments in plants are being investigated and optimized. Thirdly, different strategies are being evaluated to interfere with the function of the target molecule, thus enabling immunomodulation of metabolism or pathogen infectivity. In the near future, optimized antibody gene isolation and expression, especially in reducing subcellular environments, such as the cytosol and nucleus, should turn immunomodulation into a powerful and attractive tool for gene inactivation, complementary to the classical antisense and co-suppression approaches.

antibody production gene inactivation immunomodulation phage display plantibody reducing environment single-chain variable fragment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artsaenko, O., Peisker, M., zur Nieden, U., Fiedler, U., Weiler, E.W., Müntz, K. and Conrad, U. 1995. Expression of a singlechain Fv antibody against abscisic acid creates a wilty phenotype in transgenic tobacco. Plant J. 8: 745–750.Google Scholar
  2. Artsaenko, O., Phillips, J., Fiedler, U., Peisker, M. and Conrad, U. 1999. Intracellular immunomodulation in plants-a new tool for the investigation of phytohormones. In: K. Harper and A. Ziegler (Eds.), Recombinant Antibodies: Applications in Plant Science and Plant Pathology, Taylor & Francis, London, pp. 145–156.Google Scholar
  3. Baum, T.J., Hiatt, A., Parrott, W.A., Pratt, L.H. and Hussey, R.S. 1996. Expression in tobacco of a functional monoclonal antibody specific to stylet secretions of the root-knot nematode. Mol. Plant-Microbe Interact. 9: 382–387.Google Scholar
  4. Ben-Yakir, D. and Shochat, C. 1996. The fate of immunoglobulin G fed to larvae of Ostrinia nubilalis. Entomol. Exp. Appl. 81: 1–5.Google Scholar
  5. Bourque, J.E. 1995. Antisense strategies for genetic manipulations in plants. Plant Sci. 105: 125–149.Google Scholar
  6. Chen, Y.D. and Chen, T.A. 1998. Expression of engineered antibodies in plants: a possible tool for spiroplasma and phytoplasma disease control. Phytopathology 88: 1367–1371.Google Scholar
  7. de Haard, H.J., van Neer, N., Reurs, A., Hufton, S.E., Roovers, R.C., Henderikx, P., de Bruïne, A.P., Arends, J.-W. and Hoogenboom, H.R. 1999. A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J. Biol. Chem. 274: 18218–18230.Google Scholar
  8. De Jaeger, G., Buys, E., Eeckhout, D., Bruyns, A.-M., De Neve, M., De Wilde, C., Gerats, T., Van Montagu, M., Fischer, R. and Depicker, A. 1997. Use of phage display for isolation and characterization of single-chain variable fragments against dihydroflavonol 4-reductase from Petunia hybrida. FEBS Lett. 403: 116–122.Google Scholar
  9. De Jaeger, G., Buys, E., Eeckhout, D., De Wilde, C., Jacobs, A., Kapila, J., Angenon, G., Van Montagu, M., Gerats, T. and Depicker, A. 1999. High level accumulation of single-chain variable fragments in the cytosol of transgenic Petunia hybrida. Eur. J. Biochem. 259: 426–434.Google Scholar
  10. De Jaeger, G., Fiers, E., Eeckhout, D. and Depicker, A. 2000. Analysis of the interaction between single-chain variable fragments and their antigen in a reducing intracellular environment using the two-hybrid system. FEBS Lett. 467: 316–320.Google Scholar
  11. De Wilde, C., Peeters, K., Van Montagu, M. and Depicker, A. 1998. Transient expression of IgG antibodies and antibody fragments in intact leaf tissue of Nicotiana tabacum. Meded. Fac. Landbouwwet. Univ. Gent 63/4b: 1703–1706.Google Scholar
  12. De Wilde, C., De Jaeger, G., De Neve, M., Van Montagu, M. and Depicker, A. 1999. Production of antibodies in transgenic plants-a general introduction. In: K. Harper and A. Ziegler (Eds.) Recombinant Antibodies: Applications in Plant Science and Plant Pathology, Taylor & Francis, London, pp. 113–127.Google Scholar
  13. East, I.J., Fitzgerald, C.J., Pearson, R.D., Donaldson, R.A., Vuocolo, T., Cadogan, L.C., Tellam, R.L. and Eisemann, C.H. 1993. Lucilla cuprina: inhibition of larval growth induced by immunization of host sheep with extracts of larval peritrophic membrane. Int. J. Parasitol. 23: 221–229.Google Scholar
  14. Fecker, L.F. and Koenig, R. 1999. Engineering of Beet necrotic yellow vein virus (BNYVV) resistance in Nicotiana benthamiana. In: K. Harper and A. Ziegler (Eds.) Recombinant Antibodies: Applications in Plant Science and Plant Pathology, Taylor & Francis, London, pp. 157–170.Google Scholar
  15. Fecker, L.F., Koenig, R. and Obermeier, C. 1997. Nicotiana benthamiana plants expressing beet necrotic yellow vein virus (BNYVV) coat protein-specific scFv are partially protected against the establishment of the virus in the early stages of infection and its pathogenic effects in the late stages of infection. Arch. Virol. 142: 1857–1863.Google Scholar
  16. Fischer, R., Liao, Y.-C., Hoffmann, K., Schillberg, S. and Emans, N. 1999. Molecular farming of recombinant antibodies in plants. Biol. Chem. 380: 825–839.Google Scholar
  17. Griffiths, A.D., Williams, S.C., Hartley, O., Tomlinson, I.M., Waterhouse, P., Crosby, W.L., Kontermann, R.E., Jones, P.T., Low, N.M., Allison, T.J., Prospero, T.D., Hoogenboom, H.R., Nissim, A., Cox, J.P.L., Harrison, J.L., Zaccolo, M., Gherardi, E. and Winter, G. 1994. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13: 3245–3260.Google Scholar
  18. Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Bajyana Songa, E., Bendahman, N. and Hamers, R. 1993. Naturally occurring antibodies devoid of light chains. Nature 363: 446–448.Google Scholar
  19. Hanes, J. and Plückthun, A. 1997. In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94: 4937–4942.Google Scholar
  20. Huits, H.S.M., Gerats, A.G.M., Kreike, M.M., Mol, J.N.M. and Koes, R.E. 1994. Genetic control of dihydroflavonol 4-reductase gene expression in Petunia hybrida. Plant J. 6: 295–310.Google Scholar
  21. Kapila, J., De Rycke, R., Van Montagu, M. and Angenon, G. 1997. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci. 122: 101–108.Google Scholar
  22. Lauwereys, M., Ghahroudi, M.A., Desmyter, A., Kinne, J., Hölzer, W., De Genst, E., Wyns, L. and Muyldermans, S. 1998. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J. 17: 3512–3520.Google Scholar
  23. Le Gall, F., Bové, J.-M. and Garnier, M. 1998. Engineering of a single-chain variable-fragment (scFv) antibody specific for the stolbur phytoplasma (mollicute) and its expression in Escherichia coli and tobacco plants. Appl. Environ. Microbiol. 64: 4566–4572.Google Scholar
  24. Lehane, M.J. 1996. Digestion and fate of the vertebrate bloodmeal in insects. In: S.K. Wikel (Ed.) The Immunology of Host-Ectoparasitic Arthropod Relationships, CAB International, Wallingford, UK, pp. 131–149.Google Scholar
  25. Lener, M., Horn, I.R., Cardinale, A., Messina, S., Nielsen, U.B., Rybak, S.M., Hoogenboom, H.R., Cattaneo, A. and Biocca, S. 2000. Diverting a protein from its cellular location by intracellular antibodies. The case of p21Ras. Eur. J. Biochem. 267: 1196–1205.Google Scholar
  26. Marasco, W.A. 1995. Intracellular antibodies (intrabodies) as research reagents and therapeutic molecules for gene therapy. Immunotechnology 1: 1–19.Google Scholar
  27. Owen, M., Gandecha, A., Cockburn, B. and Whitelam, G. 1992. Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco. Bio/technology 10: 790–794.Google Scholar
  28. Phillips, J., Artsaenko, O., Fiedler, U., Horstmann, C., Mock, H.-P., Müntz, K. and Conrad, U. 1997. Seed-specific immunomodulation of abscisic acid activity induces a developmental switch. EMBO J. 16: 4489–4496.Google Scholar
  29. Rosso, M.-N., Schouten, A., Roosien, J., Borst-Vrenssen, T., Hussey, R.S., Gommers, F.J., Bakker, J., Schots, A. and Abad, P. 1996. Expression and functional characterization of a single chain Fv antibody directed against secretions involved in plant nematode infection process. Biochem. Biophys. Res. Commun. 220: 255–263.Google Scholar
  30. Sblattero, D. and Bradbury, A. 2000. Exploiting recombination in single bacteria to make large phage antibody libraries. Nature Biotechnol. 18: 75–80.Google Scholar
  31. Schouten, A. 1998. Plantibodies-Requirements for Expression and Subcellular Targeting. Ph.D. thesis, Wageningen Agricultural University, Wageningen, The Netherlands.Google Scholar
  32. Schouten, A., Roosien, J., van Engelen, F.A., de Jong, G.A.M.I., Borst-Vrenssen, A.W.M., Zilverentant, J.F., Bosch, D., Stiekema, W.J., Gommers, F.J., Schots, A. and Bakker, J. 1996. The C-terminal KDEL sequence increases the expression level of a single chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol. Biol. 30: 781–793.Google Scholar
  33. Schouten, A., Roosien, J., de Boer, J.M., Wilmink, A., Rosso, M.-N., Bosch, D., Stiekema, W.J., Gommers, F.J., Bakker, J. and Schots, A. 1997. Improving scFv antibody expression levels in the plant cytosol. FEBS Lett. 415: 235–241.Google Scholar
  34. Sheets, M.D., Amersdorfer, P., Finnern, R., Sargent, P., Lindqvist, E., Schier, R., Hemingsen, G., Wong, C., Gerhart, J.C. and Marks, J.D. 1998. Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA 95: 6157–6162.Google Scholar
  35. Shimada, N., Suzuki, Y., Nakajima, M., Conrad, U., Murofushi, N. and Yamaguchi, I. 1999. Expression of a functional singlechain antibody against GA24/19 in transgenic tobacco. Biosci. Biotechnol. Biochem. 63: 779–783.Google Scholar
  36. Smant, G., Stokkermans, J.P.W.G., Yan, Y.T., de Boer, J.M., Baum, T.J., Wang, X.H., Hussey, R.S., Gommers, F.J., Henrissat, B., Davis, E.L., Helder, J., Schots, A. and Bakker, J. 1998. Endogenous cellulases in animals: isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc. Natl. Acad. Sci. USA 95: 4906–4911.Google Scholar
  37. Tavladoraki, P., Benvenuto, E., Trinca, S., De Martinis, D., Cattaneo, A. and Galeffi, P. 1993. Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366: 469–472.Google Scholar
  38. Tavladoraki, P., Girotti, A., Donini, M., Arias, F.J., Mancini, C., Morea, V., Chiaraluce, R., Consalvi, V. and Benvenuto, E. 1999. A single-chain antibody fragment is functionally expressed in the cytoplasm of both Escherichia coli and transgenic plants. Eur. J. Biochem. 262: 617–624.Google Scholar
  39. Vũ, K.B. 1999. Llama Antibodies and Engineering of Single-Domain Antibody Fragments. Ph.D. thesis, Vrije Universiteit Brussel, Brussels, Belgium.Google Scholar
  40. Vaughan, T.J., Williams, A.J., Pritchard, K., Osbourn, J.K., Pope, A.R., Earnshaw, J.C., McCafferty, J., Hodits, R.A., Wilton, J. and Johnson, K.S. 1996. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nature Biotechnol. 14: 309–314.Google Scholar
  41. Voss, A., Niersbach, M., Hain, R., Hirsch, H.J., Liao, Y.C., Kreuzaler, F. and Fischer, R. 1995. Reduced virus infectivity in N. tabacum secreting a TMV-specific full-size antibody. Mol. Breed. 1: 39–50.Google Scholar
  42. Wattad, C., Kobiler, D., Dinoor, A. and Prusky, D. 1997. Pectate lyase of Colletotrichum gloeosporioides attacking avocado fruits: cDNA cloning and involvement in pathogenicity. Physiol. Mol. Plant Pathol. 50: 197–212.Google Scholar
  43. Wong, J.Y.M. and Opdebeeck, J.P. 1993. Immunity in vaccinated cattle exposed to experimental and natural infestations with Boophilus microplus. Int. J. Parasitol. 23: 689–692.Google Scholar
  44. Zimmermann, S., Schillberg, S., Liao, Y.-C. and Fisher, R. 1998. Intracellular expression of TMV-specific single-chain Fv fragments leads to improved virus resistance in Nicotiana tabacum. Mol. Breed. 4: 369–379.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Geert De Jaeger
    • 1
  • Chris De Wilde
    • 1
  • Dominique Eeckhout
    • 1
  • Esbjörn Fiers
    • 1
  • Ann Depicker
    • 1
  1. 1.Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie (VIB)Universiteit GentGentBelgium

Personalised recommendations