Advertisement

Journal of Atmospheric Chemistry

, Volume 37, Issue 3, pp 217–229 | Cite as

Stratospheric Photolysis Frequencies: Impact of an Improved Numerical Solution of the Radiative Transfer Equation

  • Gaby Becker
  • Jens-Uwe Grooss
  • Daniel S. McKenna
  • Rolf Müller
Article

Abstract

Numerical schemes for the calculation of photolysis rates are usually employed in simulations of stratospheric chemistry. Here, we present an improvement of the treatment of the diffuse actinic flux in a widely used stratospheric photolysis scheme (Lary and Pyle, 1991). We discuss both the consequences of this improvement and the correction of an error present in earlier applications of this scheme on the calculation of stratospheric photolysis frequencies. The strongest impact of both changes to the scheme is for small solar zenith angles. The effect of the improved treatment of the diffuse flux is most pronounced in the lower stratosphere and in the troposphere. Overall, the change in the calculated photolysis frequencies in the region of interest in the stratosphere is below about 20%, although larger deviations are found for H2O, O2, NO, N2O, and HCl.

photolysis frequencies stratospheric chemistry radiative transfer equation numerical simulation of actinic flux 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M. and Stegun, I. A. (eds), 1965: Handbook of Mathematical Functions, Dover Publications, New York.Google Scholar
  2. Anderson, D. E. and Meier, R. R., 1979: The effects of anisotropic multiple scattering on solar radiation in the troposphere and stratosphere, Appl. Optics 18, 1955.Google Scholar
  3. Becker, G., Müller, R., McKenna, D. S., Rex, M., and Carslaw, K. S., 1998: Ozone loss rates in the Arctic stratosphere in the winter 1991/92: Model calculations compared with Match results, Geophys. Res. Lett. 25, 4325–4328.Google Scholar
  4. Bregman, A., van den Broek, M., Carslaw, K. S., Müller, R., Peter, T., Scheele, M. P., and Lelieveld, J., 1997: Ozone depletion in the late winter lower arctic stratosphere: Observations and model results, J. Geophys. Res. 102, 10815–10828.Google Scholar
  5. Chipperfield, M. P., Cariolle, D., Simon, P., Ramaroson, R., and Lary, D. J., 1993: A three dimensional modeling study of trace species in the Arctic lower stratosphere during winter 1989–1990, J. Geophys. Res. 98, 7199–7218.Google Scholar
  6. Crutzen, P. J., Grooß, J.-U., Brühl, C., Müller, R., and Russell III, J. M., 1995: A reevaluation of the ozone budget with HALOE UARS data: No evidence for the ozone deficit, Science, 268, 705–708.Google Scholar
  7. DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1997: Chemical kinetics and photochemical data for use in stratospheric modeling, JPL publication 97–4.Google Scholar
  8. Grooß, J.-U., Müller, R., Becker, G., McKenna, D. S., and Crutzen, P. J., 1999: An update of the upper stratospheric ozone budget calculations based on HALOE data, J. Atmos. Chem., 34, 171–183.Google Scholar
  9. Lary, D. J. and Pyle, J. A., 1991: Diffuse radiation, twilight, and photochemistry — I, J. Atmos. Chem. 13, 373–406.Google Scholar
  10. Lary, D. J., Chipperfield, M. P., and Toumi, R., 1995: The potential impact of the reaction OH + ClO → HCl+O2 on polar ozone photochemistry, J. Atmos. Chem. 21, 61–79.Google Scholar
  11. Lean, J. L., Rottman, G. J., Kyle, H. L., Woods, T. N., Hickey, J. R., and Puga, L. C., 1997: Detection and parameterization of variations in solar mid-and near-ultraviolet radiation (200–400 nm), J. Geophys. Res. 102, 29939–29956.Google Scholar
  12. Lutman, E. R., Pyle, J. A., Chipperfield, M. P., Lary, D. J., Kilbane-Dawe, I., Waters, J. W., and Larsen, N., 1997: Three-dimensional studies of the 1991/1992 northern hemisphere winter using domain-filling trajectories with chemistry, J. Geophys. Res. 102, 1479–1488.Google Scholar
  13. Meier, R. R., Anderson Jr., D. E., and Nicolet, M., 1982: Radiation field in the troposphere and stratosphere from 240–1000 nm-I: General analysis, Planet. Space Sci., 30, 923–933.Google Scholar
  14. Meier, R. R., Anderson, G., Cantrell, C., Hall, L., Lean, J., Minschwaner, K., Shetter, R., Shettle, E., and Stamnes, K., 1997: Actinic radiation in the terrestrial atmosphere, J. Atmos. Solar-Terr. Phys., 59, 2111–2157.Google Scholar
  15. Müller, R., Crutzen, P. J., Oelhaf, H., Adrian, G. P., v. Clarmann, T., Wegner, A., Schmidt, U., and Lary, D., 1994: Chlorine chemistry and the potential for ozone depletion in the Arctic stratosphere in the winter of 1991/92, Geophys. Res. Lett. 21, 1427–1430.Google Scholar
  16. Stolarski, R. S., 1995: Scientific Assessment of the Atmospheric Effects of Stratospheric Aircraft, NASA Reference Publication 1381, NASA.Google Scholar
  17. WMO, 1986: Scientific Assessment of Ozone Depletion: 1985, Report No. 16, Geneva.Google Scholar
  18. WMO, 1990: Scientific Assessment of Ozone Depletion: 1989, Report No. 20, Geneva.Google Scholar
  19. WMO, 1998: Scientific Assessment of Ozone Depletion: 1998, Report No. 44, Geneva.Google Scholar
  20. Woyke, T., Müller, R., Stroh, F., McKenna, D. S., Engel, A., Margitan, J. J., Rex, M., and Carslaw, K. S., 1999, A test of our understanding of the ozone chemistry in the Arctic polar vortex based on in-situ measurements of ClO, BrO, and O3 in the 1994/95 winter, J. Geophys. Res. 104, 18755–18768.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Gaby Becker
    • 1
  • Jens-Uwe Grooss
    • 1
  • Daniel S. McKenna
    • 1
  • Rolf Müller
    • 1
  1. 1.Institute for Stratospheric Chemistry (ICG-1), Forschungszentrum JülichJülichGermany

Personalised recommendations