Advertisement

Journal of Neuro-Oncology

, Volume 50, Issue 1–2, pp 71–87 | Cite as

Genes that Regulate Metastasis and Angiogenesis

  • Craig P. Webb
  • George F. Vande Woude
Article

Abstract

Genetic instability and an accumulation of genetic and epigenetic changes during tumor progression lead to an increasingly aggressive and treatment-resistant phenotype, and ultimately metastasis. In recent years it has become well established that angiogenesis, the process by which new vasculature is formed from pre-existing vessels, is an essential component to primary tumor growth and distant metastasis. A greater understanding of the complex multitude of factors involved in tumor angiogenesis and metastasis is fundamental to the development of potential therapeutics to treat malignant disease. As highlighted throughout this review, angiogenesis and metastasis share many common cellular and molecular features. We will briefly discuss the pertinent genes involved in the regulation of angiogenesis and metastasis.

genes angiogenesis metastasis therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Risau W: Mechanisms of angiogenesis. Nature 386: 671-674, 1997Google Scholar
  2. 2.
    Hobson B, Denekamp J: Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br J Cancer 49: 405-413, 1984Google Scholar
  3. 3.
    Maragoudakis ME: Angiogenesis: An overview of regulation and potential clinical application. In: Catravas JD, Callow AD, Ryan US (eds) Vascular Endothelium: Responses to Injury, New York: Plenum Press, 1996, pp 157-165Google Scholar
  4. 4.
    Cockerill GW, Gamble JR, Vadas MA: Angiogenesis: models and modulators. Int Rev Cytol 159: 113-160, 1995Google Scholar
  5. 5.
    Antonelli-Orlidge A, Smith S, D'Amore P: Influence of pericytes on capillary endothelial cell growth. Am Rev Respir Dis 140: 1129-1131, 1989Google Scholar
  6. 6.
    Folkman J: Tumor angiogenesis: therapeutic implications. N Engl J Med 285: 1182-1186, 1971Google Scholar
  7. 7.
    Wesseling P, van der Laak JA, Link M, Teepen HL, Ruiter DJ: Quantitative analysis of microvascular changes in diffuse astrocytic neoplasms with increasing grade of malignancy. Hum Pathol 29: 352-358, 1998Google Scholar
  8. 8.
    Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM: Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 55: 3964-3968, 1995Google Scholar
  9. 9.
    Weidner N, Semple JP, Welch WR, Folkman J: Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 324: 1-8, 1991Google Scholar
  10. 10.
    Folkman J: What is the evidence that tumors are angiogenesis dependent? (editorial). J Natl Cancer Inst 82: 4-6, 1990Google Scholar
  11. 11.
    Holmgren L, O'Reilly MS, Folkman J: Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression (see comments). Nat Med 1: 149-53, 1995Google Scholar
  12. 12.
    Fidler I, Ellis L: The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79: 185-188, 1994Google Scholar
  13. 13.
    Zetter BR: Angiogenesis and tumor metastasis. Annu Rev Med 49: 407-424, 1998Google Scholar
  14. 14.
    Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM: Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133: 95-109, 1988Google Scholar
  15. 15.
    Hashizume H, Baluk P, Morikawa S, McLean J, Thurston G, Roberge S, Jain R, McDonald D: Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156: 1363-1380, 2000Google Scholar
  16. 16.
    Smolin G, Hyndiuk RA: Lymphatic drainage from vascularized rabbit cornea. Am J Ophthalmol 72: 147-151, 1971Google Scholar
  17. 17.
    Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353-364, 1996Google Scholar
  18. 18.
    Ono M, Torisu H, Fukushi J, Nishie A, Kuwano M: Biological implications of macrophage infiltration in human tumor angiogenesis. Cancer Chemother Pharmacol 43: S69-S71, 1999Google Scholar
  19. 19.
    Gregoire M, Lieubeau B: The role of fibroblasts in tumor behavior. Cancer Metastasis Rev 14: 339-350, 1995Google Scholar
  20. 20.
    Bohle AS, Kalthoff H: Molecular mechanisms of tumor metastasis and angiogenesis. Langenbecks Arch Surg 384: 133-140, 1999Google Scholar
  21. 21.
    Harris SR, Thorgeirsson UP: Tumor angiogenesis: biology and therapeutic prospects. In Vivo 12: 563-570, 1998Google Scholar
  22. 22.
    Christofori G: The role of fibroblast growth factors in tumour progression and angiogenesis. In: Bicknell R, Lewis C, Ferrara N (eds) Tumor Angiogenesis. Oxford: Oxford University Press, 1996Google Scholar
  23. 23.
    Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L: Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci USA 83: 7297-7301, 1986Google Scholar
  24. 24.
    Szabo S, Sandor Z: The diagnostic and prognostic value of tumor angiogenesis. Eur J Surg Suppl 582: 99-103, 1998Google Scholar
  25. 25.
    Li VW, Folkerth RD, Watanabe H, Yu C, Rupnick M, Barnes P, Scott RM, Black PM, Sallan SE, Folkman J: Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumours. Lancet 344: 82-86, 1994Google Scholar
  26. 26.
    Brown L, Detmar M, Claffey K, Nagy J, Feng D, Dvorak A, Dvorak H: Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. EXS 79: 233-269, 1997Google Scholar
  27. 27.
    Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K: Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 60: 203-212, 2000Google Scholar
  28. 28.
    Risau W: What, if anything, is an angiogenic factor? Cancer Metastasis Rev 15: 149-151, 1996Google Scholar
  29. 29.
    Schmaltz C, Hardenbergh PH, Wells A, Fisher DE: Regulation of proliferation-survival decisions during tumor cell hypoxia. Mol Cell Biol 18: 2845-2854, 1998Google Scholar
  30. 30.
    Maxwell P, Dachs G, Gleadle J, Nicholls L, Harris A, Stratford I, Hankinson O, Pugh C, Ratcliffe P: Hypoxiainducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 94: 8104-8109, 1997Google Scholar
  31. 31.
    Richard DE, Berra E, Pouyssegur J: Angiogenesis: how a tumor adapts to hypoxia. Biochem Biophys Res Commun 266: 718-722, 1999Google Scholar
  32. 32.
    Plate KH, Risau W: Angiogenesis in malignant gliomas. Glia 15: 339-347, 1995Google Scholar
  33. 33.
    Royds JA, Dower SK, Qwarnstrom EE, Lewis CE: Response of tumour cells to hypoxia: role of p53 and NFkB. Mol Pathol 51: 55-61, 1998Google Scholar
  34. 34.
    KaelinW, Iliopoulos O, Lonergan K, Ohh M: Functions of the von Hippel-Lindau tumour suppressor protein. J Intern Med 243: 535-539, 1998Google Scholar
  35. 35.
    Harada H, Nakagawa K, Iwata S, Saito M, Kumon Y, Sakaki S, Sato K, Hamada K: Restoration of wild-type p16 down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human gliomas. Cancer Res 59: 3783-3789, 1999Google Scholar
  36. 36.
    Rak J, Filmus J, Finkenzeller G, Grugel S, Marme D, Kerbel HS: Oncogenes as inducers of tumor angiogenesis. Cancer Metastasis Rev 14: 263-277, 1995Google Scholar
  37. 37.
    Chiarugi V, Magnelli L, Gallo O: Cox-2, iNOS and p53 as play-makers of tumor angiogenesis (review). Int J Mol Med 2: 715-719, 1998Google Scholar
  38. 38.
    Petit AM, Rak J, Hung MC, Rockwell P, Goldstein N, Fendly B, Kerbel RS: Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 151: 1523-1530, 1997Google Scholar
  39. 39.
    Ferrara N: The role of vascular endothelial growth factor in pathological angiogenesis. Breast Cancer Res Treat 36: 127-137, 1995Google Scholar
  40. 40.
    Ishigami S, Arii S, Furutani M, Niwano M, Harada T, Mizumoto M, Mori A, Onodera H, Imamura M: Predictive value of vascular endothelial growth factor (VEGF) in metastasis and prognosis of human colorectal cancer. Br J Cancer 78: 1379-1384, 1998Google Scholar
  41. 41.
    Dvorak H, Brown L, Detmar M, Dvorak A: Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146: 1029-1039, 1995Google Scholar
  42. 42.
    Folkman J: Clinical applications of research on angiogenesis. N Engl J Med 333: 1757-1763, 1995Google Scholar
  43. 43.
    Fukumura D, Xavier H, Sugiura T, Chen Y, Park E, Lu N, Selig M, Nielsen G, Taksir T, Jain R, Seed B: Tumor induction of VEGF promoter activity in stromal cells. Cell 94: 715-725, 1998Google Scholar
  44. 44.
    Shaheen RM, Davis DW, Liu W, Zebrowski BK, Wilson MR, Bucana CD, McConkey DJ, McMahon G, Ellis LM: Antiangiogenic therapy targeting the tyrosine kinase receptor for vascular endothelial growth factor receptor inhibits the growth of colon cancer liver metastasis and induces tumor and endothelial cell apoptosis. Cancer Res 59: 5412-5416, 1999Google Scholar
  45. 45.
    Klohs WD, Hamby JM: Antiangiogenic agents. Curr Opin Biotechnol 10: 544-549, 1999Google Scholar
  46. 46.
    HambyJ, Showalter H: Small molecule inhibitors of tumorpromoted angiogenesis, including protein tyrosine kinase inhibitors. Pharmacol Ther 82: 169-193, 1999Google Scholar
  47. 47.
    Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N: Inhibition of vascular endothelial growth factorinduced angiogenesis suppresses tumour growth in vivo. Nature 362: 841-844, 1993Google Scholar
  48. 48.
    Millauer B, Shawver L, Plate K, Risau W, Ullrich A: Glioblastoma growth inhibited in vivo by a dominantnegative Flk-1 mutant. Nature 367: 576-579, 1994Google Scholar
  49. 49.
    Sasaki M, Wizigmann-Voos S, Risau W, Plate KH: Retrovirus producer cells encoding antisenseVEGFprolong survival of rats with intracranial GS9L gliomas. Int J Dev Neurosci 17: 579-591, 1999Google Scholar
  50. 50.
    Thompson WD, Li WW, Maragoudakis M: The clinical manipulation of angiogenesis: pathology, side-effects, surprises, and opportunities with novel human therapies. J Pathol 187: 503-510, 1999Google Scholar
  51. 51.
    Hanahan D: Signaling vascular morphogenesis and maintenance. Science 277: 48-50, 1997Google Scholar
  52. 52.
    Davis S, Yancopoulos G: The angiopoietins: Yin and Yang in angiogenesis. Curr Top Microbiol Immunol 237: 173-185, 1999Google Scholar
  53. 53.
    Tallquist MD, Soriano P, Klinghoffer RA: Growth factor signaling pathways in vascular development. Oncogene 18: 7917-7932, 1999Google Scholar
  54. 54.
    Maisonpierre P, Suri C, Jones P, Bartunkova S, Wiegand S, Radziejewski C, Compton D, McClain J, Aldrich T, Papadopoulos N, Daly T, Davis S, Sato T, Yancopoulos G: Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277: 55-50, 1997Google Scholar
  55. 55.
    Holash J, Maisonpierre P, Compton D, Boland P, Alexander C, Zagzag D, Yancopoulos G, Weigand S: Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284: 1994-1998, 1999Google Scholar
  56. 56.
    Kaipainen A, Vlaykova T, Hatva E, Bohling T, Jekunen A, Pyrhonen S, Alitalo K: Enhanced expression of the tie receptor tyrosine kinase mesenger RNA in the vascular endothelium of metastatic melanomas. Cancer Res 54: 6571-6577, 1994Google Scholar
  57. 57.
    Hatva E, Kaipainen A, Mentula P, Jaaskelainen J, Paetau A, Haltia M, Alitalo K: Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors. Am J Pathol 146: 368-378, 1995Google Scholar
  58. 58.
    Salven P, Joensuu H, Heikkila P, Matikainen MT, Wasenius VM, Alanko A, Alitalo K: Endothelial Tie growth factor receptor provides antigenic marker for assessment of breast cancer angiogenesis. Br J Cancer 74: 69-72, 1996Google Scholar
  59. 59.
    Peters KG, Coogan A, Berry D, Marks J, Iglehart JD, Kontos CD, Rao P, Sankar S, Trogan E: Expression of Tie2/Tek in breast tumour vasculature provides a new marker for evaluation of tumour angiogenesis. Br J Cancer 77: 51-56, 1998Google Scholar
  60. 60.
    Webb C, Vande Woude G: Met Gene. In: Creighton TE (ed) Encyclopedia of Molecular Medicine. John Wiley & Sons, 2000Google Scholar
  61. 61.
    Jeffers M, Rong S, Vande Woude G: Hepatocyte growth factor/scatter factor-Met signaling in tumorigenicity and invasion/metastasis. J Mol Med 74: 505-513, 1996Google Scholar
  62. 62.
    Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, Aaronson SA: Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251: 802-804, 1991Google Scholar
  63. 63.
    Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM, Vande Woude GF: Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311: 29-33, 1984Google Scholar
  64. 64.
    Iyer A, Kmiecik TE, Park M, Daar I, Blair D, Dunn KJ, Sutrave P, Ihle JN, Bodescot M, Vande Woude GF: Structure, tissue-specific expression, and transforming activity of the mouse met protooncogene. Cell Growth Differ 1: 87-95, 1990Google Scholar
  65. 65.
    Rosen EM, Lamszus K, Laterra J, Polverini PJ, Rubin JS, Goldberg ID: HGF/SF in angiogenesis. Ciba Found Symp 212: 215-226, 1997Google Scholar
  66. 66.
    Shawver LK, Lipson KE, Fong TAT, McMahon G, Plowman GD, Strawn LM: Receptor tyrosine kinases as targets for inhibition of angiogenesis. Drug Discovery Today 2: 50-63, 1997Google Scholar
  67. 67.
    Adams R, Wilkinson G, Weiss C, Diella F, Gale N, Deutsch U, Risau W, Klein R: Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13: 295-306, 1999Google Scholar
  68. 68.
    Soriano P: Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev 8: 1888-1896, 1994Google Scholar
  69. 69.
    Laveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betscholtz C: Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8: 1875-1887, 1994Google Scholar
  70. 70.
    Lindahl P, Johansson B, Leveen P, Betsholtz C: Pericyte loss and microaneurysm for formation of PDGF-Bdeficient mice. Science 277: 242-245, 1997Google Scholar
  71. 71.
    Jensen R: Growth factor-mediated angiogenesis in the malignant progression of glial tumors: a review. Surg Neurol 49: 189-195, 1998Google Scholar
  72. 72.
    Wang D, Huang HJ, Kazlauskas A, Cavenee WK: Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phosphatidylinositol 3-kinase. Cancer Res 59: 1464-1472, 1999Google Scholar
  73. 73.
    Fajardo LF, Kwan HH, Kowalski J, Prionas SD, Allison AC: Dual role of tumor necrosis factor-alpha in angiogenesis. Am J Pathol 140: 539-544, 1992Google Scholar
  74. 74.
    Van Snick J: Interleukin-6: an overview. Annu Rev Immunol 8: 253-278, 1990Google Scholar
  75. 75.
    Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM: Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258: 1798-1801, 1992Google Scholar
  76. 76.
    Hu DE, HoriY, Fan TP: Interleukin-8 stimulates angiogenesis in rats. Inflammation 17: 135-143, 1993Google Scholar
  77. 77.
    Engels K, Fox S, Harris A: Angiogenesis as a biologic and prognostic indicator in human breast carcinoma. EXS 79: 113-156, 1997Google Scholar
  78. 78.
    Takahashi Y, Bucana CD, Liu W, Yoneda J, Kitadai Y, Cleary KR, Ellis LM: Platelet-derived endothelial cell growth factor in human colon cancer angiogenesis: role of infiltrating cells (see comments). J Natl Cancer Inst 88: 1146-1151, 1996Google Scholar
  79. 79.
    Nakayama Y, Sueishi K, Oka K, Kono S, Tomonaga M: Stromal angiogenesis in human glioma: a role of plateletderived endothelial cell growth factor. Surg Neurol 49: 181-187; discussion 187-188, 1998Google Scholar
  80. 80.
    Bischoff J: Cell adhesion and angiogenesis. J Clin Invest 100: S37-S39, 1997Google Scholar
  81. 81.
    Barth AI, Nathke IS, Nelson WJ: Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr Opin Cell Biol 9: 683-690, 1997Google Scholar
  82. 82.
    Lampugnani M, Dejana E: Interendothelial junctions: structure, signalling and functional roles. Curr Opin Cell Biol 9: 674-682, 1997Google Scholar
  83. 83.
    Esser S, Lampugnani M, Corada M, Dejana E, Risau W: Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation inendothelial cells. J Cell Sci 111: 1853-1865, 1998Google Scholar
  84. 84.
    Dejana E: Endothelial adherens junctions: implications in the control of vascular permeability and angiogenesis. J Clin Invest 100: S7-S10, 1997Google Scholar
  85. 85.
    Sheibani N, Frazier WA: Thrombospondin-1, PECAM-1, and regulation of angiogenesis. Histol Histopathol 14: 285-294, 1999Google Scholar
  86. 86.
    Brooks P: Cell adhesion molecules in angiogenesis. Cancer Metastasis Rev 15: 187-194, 1996Google Scholar
  87. 87.
    Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Janatpour M, Liaw CW, Manning K, Morales J et al.: A cell culture model of the blood-brain barrier. J Cell Biol 115: 1725-1735, 1991Google Scholar
  88. 88.
    Bird I, Taylor V, Newton J, Spragg J, Simmons D, Salmon M, Buckley C: Homophilic PECAM-1 (CD31) interactions prevent endothelial cell apoptosis but do not support cell spreading or migration. J Cell Sci 112: 1989-1997, 1999Google Scholar
  89. 89.
    Duncan GS, Andrew DP, Takimoto H, Kaufman SA, Yoshida H, Spellberg J, Luis de la Pompa J, Elia A, Wakeham A, Karan-Tamir B, Muller WA, Senaldi G, Zukowski MM, Mak TW: Genetic evidence for functional redundancy of Platelet/Endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J Immunol 162: 3022-3030, 1999Google Scholar
  90. 90.
    Tedder TF, Steeber DA, Chen A, Engel P: The selectins: vascular adhesion molecules. Faseb J 9: 866-873, 1995Google Scholar
  91. 91.
    Bevilacqua M: Endothelial-leukocyte adhesion molecules. Annu Rev Immunol 11: 767-804, 1993Google Scholar
  92. 92.
    Nguyen M, Strubel NA, Bischoff J: A role for sialyl Lewis-X/A glycoconjugates in capillary morphogenesis. Nature 365: 267-269, 1993Google Scholar
  93. 93.
    Koch AE, Halloran MM, Haskell CJ, Shah MR, Polverini PJ: Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1. Nature 376: 517-519, 1995Google Scholar
  94. 94.
    Hartwell DW, Butterfield CE, Frenette PS, Kenyon BM, Hynes RO, Folkman J, Wagner DD: Angiogenesis in P-and E-selectin-deficient mice. Microcirculation 5: 173-178, 1998Google Scholar
  95. 95.
    Lampugnani M, Resnati M, Dejana E, Marchisio P: The role of integrins in the maintenance of endothelial monolayer integrity. J Cell Biol 112: 479-490, 1991Google Scholar
  96. 96.
    O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J: Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277-285, 1997Google Scholar
  97. 97.
    Grant M, Caballero S, Bush D, Spoerri P: Fibronectin fragments modulate human retinal capillary cell proliferation and migration. Diabetes 47: 1335-1340, 1998Google Scholar
  98. 98.
    Nicosia RF, Bonanno E, Smith M: Fibronectin promotes the elongation of microvessels during angiogenesis in vitro. J Cell Physiol 154: 654-661, 1993Google Scholar
  99. 99.
    Jackson C, Jenkins K: Type I collagen fibrils promote rapid vascular tube formation upon contact with the apical side of cultured endothelium. Exp Cell Res 192: 319-323, 1991Google Scholar
  100. 100.
    Vlodavsky I, Korner G, Ishai-Michaeli R, Bashkin P, Bar-Shavit R, Fuks Z: Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. Cancer Metastasis Rev 9: 203-226, 1990Google Scholar
  101. 101.
    Andreasen PA, Kjoller L, Christensen L, Duffy MJ: The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 72: 1-22, 1997Google Scholar
  102. 102.
    Preissner KT, May AE, Wohn KD, Germer M, Kanse SM: Molecular crosstalk between adhesion receptors and proteolytic cascades in vascular remodelling. Thromb Haemost 78: 88-95, 1997Google Scholar
  103. 103.
    Blasi F: Urokinase and urokinase receptor: a paracrine/ autocrine system regulating cell migration and invasiveness. Bioessays 15: 105-111, 1993Google Scholar
  104. 104.
    Mignatti P, Rifkin D: Plasminogen activators and matrix metalloproteinases in angiogenesis. Enzyme Protein 49: 117-137, 1996Google Scholar
  105. 105.
    Rabbani SA: Metalloproteases and urokinase in angiogenesis and tumor progression. In vivo 12: 135-142, 1998Google Scholar
  106. 106.
    Grant DS, Kleinman HK, Goldberg ID, Bhargava MM, Nickoloff BJ, Kinsella JL, Polverini P, Rosen EM: Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci USA 90: 1937-1941, 1993Google Scholar
  107. 107.
    Laterra J, Nam M, Rosen E, Rao JS, Lamszus K, Goldberg ID, Johnston P: Scatter factor/hepatocyte growth factor gene transfer enhances glioma growth and angiogenesis in vivo. Lab Invest 76: 565-577, 1997Google Scholar
  108. 108.
    Swiercz R, Skrzypczak-Jankun E, Merrell MM, Selman SH, Jankun J: Angiostatic activity of synthetic inhibitors of urokinase type plasminogen activator. Oncol Rep 6: 523-526, 1999Google Scholar
  109. 109.
    Yu AE, Hewitt RE, Connor EW, Stetler-Stevenson WG: Matrix metalloproteinases. Novel targets for directed cancer therapy. Drugs Aging 11: 229-244, 1997Google Scholar
  110. 110.
    Moses MA: The regulation of neovascularization of matrix metalloproteinases and their inhibitors. Stem Cells 15: 180-189, 1997Google Scholar
  111. 111.
    Zucker S, Conner C, DiMassmo BI, Ende H, Drews M, Seiki M, Bahou WF: Thrombin induces the activation of progelatinase A in vascular endothelial cells. Physiologic regulation of angiogenesis. J Biol Chem 270: 23730-23738, 1995Google Scholar
  112. 112.
    Wang H, Keiser JA: Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of flt-1. Circ Res 83: 832-840, 1998Google Scholar
  113. 113.
    Giancotti F, Ruoslahti E: Integrin signaling. Science 285: 1028-1032, 1999Google Scholar
  114. 114.
    Kumar C: Signaling by integrin receptors. Oncogene 17: 1365-1373, 1998Google Scholar
  115. 115.
    Varner JA: The role of vascular cell integrins alpha v beta 3 and alpha v beta 5 in angiogenesis. Exs 79: 361-390, 1997Google Scholar
  116. 116.
    Brooks P, Clark R, Cheresh D: Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264: 569-571, 1994Google Scholar
  117. 117.
    Gladson C: Expression of integrin alpha v beta 3 in small blood vessels of glioblastoma tumors. J Neuropathol Exp Neurol 55: 1143-1149, 1996Google Scholar
  118. 118.
    Brooks P, Montgomery A, Rosenfeld M, Reisfeld R, Hu T, Klier G, Cheresh D: Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79: 1157-1164, 1994Google Scholar
  119. 119.
    Stromblad S, Becker JC, Yebra M, Brooks PC, Cheresh DA: Suppression of p53 activity and p21WAF1/ CIP1 expression by vascular cell integrin alphaVbeta3 during angiogenesis. J Clin Invest 98: 426-433, 1996Google Scholar
  120. 120.
    Brooks P, Stromblad S, Sanders L, von Schalscha T, Aimes R, Stetler-Stevenson W, Quigley J, Cheresh D: Localization of matrix metalloproteinase MP-2 to the surface of invasive cells by interaction with integrin alpha v beta 2. Cell 85: 683-693, 1996Google Scholar
  121. 121.
    Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA: Definition of two angiogenic pathways by distinct alpha v integrins. Science 270: 1500-1502, 1995Google Scholar
  122. 122.
    Abedi H, Zachary I: Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J Biol Chem 272: 15442-15451, 1997Google Scholar
  123. 123.
    Chang E, Boyd A, Nelson CC, Crowley D, Law T, Keough KM, Folkman J, Ezekowitz RA, Castle VP: Successful treatment of infantile hemangiomas with interferon-alpha-2b. J Pediatr Hematol Oncol 19: 237-244, 1997Google Scholar
  124. 124.
    O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J: Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma (see comments). Cell 79: 315-328, 1994Google Scholar
  125. 125.
    Clapp C, JA M, Guzman R, Rentier-Delure F, Weiner R: The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 133: 1292-1299, 1993Google Scholar
  126. 126.
    Ferrara N, Clapp C, Weiner R: The 16K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology 129: 896-900, 1991Google Scholar
  127. 127.
    Homandberg G, Williams J, Grant D, Schumacher B, Eisenstein R: Heparin-binding fragments of fibronectin are potent inhibitors of endothelial cell growth. Am J Pathol 120: 327-332, 1985Google Scholar
  128. 128.
    Jiang W, Hiscox S, Parr C, Martin T, Matsumoto K, Nakamura T, Mansel R: Antagonistic effect of NK4, a novel hepatocyte growth factor variant, on in vitro angiogenesis of human vascular endothelial cells. Clin Cancer Res 5: 3695-3703, 1999Google Scholar
  129. 129.
    Good D, Polverini P, Rastinejad F, Le Beau M, Lemons R, Frazier W, Bouck N: A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 87: 6624-6628, 1990Google Scholar
  130. 130.
    Weinstat-Saslow DL, Zabrenetzky VS, VanHoutte K, FrazierWA, Roberts DD, Steeg PS: Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Res 54: 6504-6511, 1994Google Scholar
  131. 131.
    Dameron K, Volpert O, Tainsky M, Bouch N: Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265: 1582-1584, 1994Google Scholar
  132. 132.
    Ruoslahti E: Fibronectin and its integrin receptors in cancer. Adv Cancer Res 76: 1-20, 1999Google Scholar
  133. 133.
    Chambers AF, MacDonald IC, Schmidt EE, Morris VL, Groom AC: Clinical targets for anti-metastasis therapy. Adv Cancer Res 79: 91-121, 2000Google Scholar
  134. 134.
    Denhardt DT: Oncogene-initiated aberrant signaling engenders the metastatic phenotype: synergistic transcription factor interactions are targets for cancer therapy. Crit Rev Oncog 7: 261-291, 1996Google Scholar
  135. 135.
    Bos JL: Ras oncogenes in human cancer: a review. Cancer Res 49: 4682-4689, 1989Google Scholar
  136. 136.
    Chambers AF, Tuck AB: Ras-responsive genes and tumor metastasis. Crit Rev Oncog 4: 95-114, 1993Google Scholar
  137. 137.
    Webb CP, Van Aelst L, Wigler MH, Woude GF: Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc Natl Acad Sci USA 95: 8773-8778, 1998Google Scholar
  138. 138.
    Webb C, Vande Woude G: Animal model for Ras-induced metastasis. In: Balch W, Der C, Hall A (eds) Methods in Enzymology. Academic Press, 2000Google Scholar
  139. 139.
    Egan SE, Wright JA, Jarolim L, Yanagihara K, Bassin RH, Greenberg AH: Transformation by oncogenes encoding protein kinases induces the metastatic phenotype. Science 238: 202-205, 1987Google Scholar
  140. 140.
    Greenberg AH, Egan SE, Wright JA: Oncogenes and metastatic progression. Invasion Metastasis 9: 360-378, 1989Google Scholar
  141. 141.
    To CT, Tsao MS: The roles of hepatocyte growth factor/ scatter factor and met receptor in human cancers (Review). Oncol Rep 5: 1013-1024, 1998Google Scholar
  142. 142.
    Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P, Scherer SW, Zhuang Z, Lubensky I, Dean M, Allikmets R, Chidambaram A, Bergerheim UR, Feltis JT, Casadevall C, Zamarron A, Bernues M, Richard S, Lips CJ, Walther MM, Tsui LC, Geil L, Orcutt ML, Stackhouse T, Zbar B et al.: Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 16: 68-73, 1997Google Scholar
  143. 143.
    Jeffers M, Schmidt L, Nakaigawa N, Webb CP, Weirich G, Kishida T, Zbar B, Vande Woude GF: Activating mutations for the met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci USA 94: 11445-11450, 1997Google Scholar
  144. 144.
    Jeffers M, Fiscella M, Webb CP, Anver M, Koochekpour S, Vande Woude GF: The mutationally activated Met receptor mediates motility and metastasis. Proc Natl Acad Sci USA 95: 14417-14422, 1998Google Scholar
  145. 145.
    Webb CP, Hose CD, Koochekpour S, Jeffers M, Oskarsson M, Sausville E, Monks A, Vande Woude GF: The geldanamycins are potent inhibitors of the hepatocyte growth factor/scatter factor-meturokinase plasminogen activator-plasmin proteolytic network. Cancer Res 60: 342-349, 2000Google Scholar
  146. 146.
    Steeg PS, Bevilacqua G, Kopper L, Thorgeirsson UP, Talmadge JE, Liotta LA, Sobel ME: Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 80: 200-204, 1988Google Scholar
  147. 147.
    Freije JM, MacDonald NJ, Steeg PS: Nm23 and tumour metastasis: basic and translational advances. Biochem Soc Symp 63: 261-271, 1998Google Scholar
  148. 148.
    Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer (see comments). Science 275: 1943-1947, 1997Google Scholar
  149. 149.
    Di Cristofano A, Pandolfi PP: The multiple roles of PTEN in tumor suppression. Cell 100: 387-390, 2000Google Scholar
  150. 150.
    McClatchey A, Saotome I, Mercer K, Crowley D, Gusella J, Bronson R, Jacks T: Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev 12: 1121-1133, 1998Google Scholar
  151. 151.
    Kirsch DG, Kastan MB: Tumor-suppressor p53: implications for tumor development and prognosis. J Clin Oncol 16: 3158-3168, 1998Google Scholar
  152. 152.
    Takeichi M: Cadherins in cancer: implications for invasion and metastasis. Curr Opin Cell Biol 5: 806-811, 1993Google Scholar
  153. 153.
    Christofori G, Semb H: The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci 24: 73-76, 1999Google Scholar
  154. 154.
    Imao T, Koshida K, Endo Y, Uchibayashi T, Sasaki T, Namiki M: Dominant role of E-cadherin in the progression of bladder cancer. J Urol 161: 692-698, 1999Google Scholar
  155. 155.
    Karayiannakis AJ, Syrigos KN, Chatzigianni E, Papanikolaou S, Alexiou D, Kalahanis N, Rosenberg T, Bastounis E: Aberrant E-cadherin expression associated with loss of differentiation and advanced stage in human pancreatic cancer. Anticancer Res 18: 4177-4180, 1998Google Scholar
  156. 156.
    Dai D, Chen J, Xu L: (Quantitative analysis of E-cadherin expression and clinicopathologic evaluation in gastric cancer). Chung Hua I Hsueh Tsa Chih 77: 668-671, 1997Google Scholar
  157. 157.
    Hirohashi S: Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 153: 333-339, 1998Google Scholar
  158. 158.
    Hiscox S, Jiang WG: Association of the HGF/SF receptor, c-met, with the cell-surface adhesion molecule, E-cadherin, and catenins in human tumor cells. Biochem Biophys Res Commun 261: 406-411, 1999Google Scholar
  159. 159.
    Pantel K, Schlimok G, Angstwurm M, Passlick B, Izbicki JR, Johnson JP, Riethmuller G: Early metastasis of human solid tumours: expression of cell adhesion molecules. Ciba Found Symp 189: 157-170, 1995Google Scholar
  160. 160.
    Ogawa Y, Hirakawa K, Nakata B, Fujihara T, Sawada T, Kato Y, Yoshikawa K, Sowa M: Expression of intercellular adhesion molecule-1 in invasive breast cancer reflects low growth potential, negative lymph node involvement, and good prognosis. Clin Cancer Res 4: 31-36, 1998Google Scholar
  161. 161.
    Levine M, Liotta L, Stracke M: Stimulation and regulation of tumor cell motility in invasion and metastasis. EXS 74: 157-179, 1995Google Scholar
  162. 162.
    Duffy M: Cancer metastasis: biological and clinical aspects. Ir J Med Sci 167: 4-8, 1998Google Scholar
  163. 163.
    Negus RP, Balkwill FR: Cytokines in tumour growth, migration and metastasis. World J Urol 14: 157-165, 1996Google Scholar
  164. 164.
    Nabi IR, Watanabe H, Raz A: Autocrine motility factor and its receptor: role in cell locomotion and metastasis. Cancer Metastasis Rev 11: 5-20, 1992Google Scholar
  165. 165.
    Takanami I, Takeuchi K, Naruke M, Kodaira S, Tanaka F, Watanabe H, Raz A: Autocrine motility factor in pulmonary adenocarcinomas: results of an immunohistochemical study. Tumour Biol 19: 384-389, 1998Google Scholar
  166. 166.
    Hirono Y, Fushida S, Yonemura Y, Yamamoto H, Watanabe H, Raz A: Expression of autocrine motility factor receptor correlates with disease progression in human gastric cancer. Br J Cancer 74: 2003-2007, 1996Google Scholar
  167. 167.
    Koochekpour S, Jeffers M, Rulong S, Taylor G, Klineberg E, Hudson EA, Resau JH, Vande Woude GF: Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 57: 5391-5398, 1997Google Scholar
  168. 168.
    Moriyama T, Kataoka H, Koono M, Wakisaka S: Expression of hepatocyte growth factor/scatter factor and its receptor c-Met in brain tumors: evidence for a role in progression of astrocytic tumors (Review). Int J Mo Med 3: 531-536, 1999Google Scholar
  169. 169.
    Kleiner DE, Stetler-Stevenson WG: Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol 43: S42-S51, 1999Google Scholar
  170. 170.
    Dano K, Romer J, Nielsen BS, Bjorn S, Pyke C, Rygaard J, Lund LR: Cancer invasion and tissue remodeling-cooperation of protease systems and cell types. Apmis 107: 120-127, 1999Google Scholar
  171. 171.
    Duffy MJ, Maguire TM, McDermott EW, O'Higgins N: Urokinase plasminogen activator: a prognostic marker in multiple types of cancer. J Surg Oncol 71: 130-135, 1999Google Scholar
  172. 172.
    Arai Y, Kubota T, Nakagawa T, Kabuto M, Sato K, Kobayashi H: Production of urokinase-type plasminogen activator (u-PA) and plasminogen activator inhibitor-1 (PAI-1) in human brain tumours. Acta Neurochir 140: 377-385, 1998Google Scholar
  173. 173.
    Sandstrom M, Johansson M, Sandstrom J, Bergenheim AT, Henriksson R: Expression of the proteolytic factors, tPA and uPA, PAI-1 and VEGF during malignant glioma progression. Int J Dev Neurosci 17: 473-481, 1999Google Scholar
  174. 174.
    Mohanam S, Gladson CL, Rao CN, Rao JS: Biological significance of the expression of urokinase-type plasminogen activator receptors (uPARs) in brain tumors. Front Biosci 4: D178-D187, 1999Google Scholar
  175. 175.
    Sato H, Seiki M: Membrane-type matrix metalloproteinases (MT-MMPs) in tumor metastasis. J Biochem (Tokyo) 119: 209-215, 1996Google Scholar
  176. 176.
    Curran S, Murray GI: Matrix metalloproteinases in tumour invasion and metastasis. J Pathol 189: 300-308, 1999Google Scholar
  177. 177.
    Forsyth PA, Wong H, Laing TD, Rewcastle NB, Morris DG, Muzik H, Leco KJ, Johnston RN, Brasher PM, Sutherland G, Edwards DR: Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 79: 1828-1835, 1999Google Scholar
  178. 178.
    Jeffers M, Rong S, Vande Woude GF: Enhanced tumorigenicity and invasion-metastasis by hepatocyte growth factor/scatter factor-met signalling in human cells concomitant with induction of the urokinase proteolysis network. Mol Cell Biol 16: 1115-1125, 1996Google Scholar
  179. 179.
    Hamasuna R, Kataoka H, Moriyama T, Itoh H, Seiki M, Koono M: Regulation of matric metalloproteinase-2 (MMP-2) by hepatocyte growth factor/scatter factor (HGF/SF) in human glioma cells: HGF/SF enhances MMP-2 expression and activation accompanying up-regulation of membrane type-1 MMP. Int J Cancer 82: 274-281, 1999Google Scholar
  180. 180.
    Juliano RL, Varner JA: Adhesion molecules in cancer: the role of integrins. Curr Opin Cell Biol 5: 812-818, 1993Google Scholar
  181. 181.
    Danen EH, van Muijen GN, ten Berge PJ, Ruiter DJ: Integrins and melanoma progression. Recent Results Cancer Res 128: 119-132, 1993Google Scholar
  182. 182.
    Natali PG, Nicotra MR, Bartolazzi A, Cavaliere R, Bigotti A: Integrin expression in cutaneous malignant melanoma: association of the alpha 3/beta 1 heterodimer with tumor progression. Int J Cancer 54: 68-72, 1993Google Scholar
  183. 183.
    Rooprai HK, Vanmeter T, Panou C, Schnull S, Trillo-Pazos G, Davies D, Pilkington GJ: The role of integrin receptors in aspects of glioma invasion in vitro. Int J Dev Neurosci 17: 613-623, 1999Google Scholar
  184. 184.
    Kornberg LJ: Focal adhesion kinase and its potential involvement in tumor invasion and metastasis. Head Neck 20: 745-752, 1998Google Scholar
  185. 185.
    Gu J, Tamura M, Yamada KM: Tumor suppressor PTEN inhibits integrin-and growth factor-mediated mitogenactivated protein (MAP) kinase signaling pathways. J Cell Biol 143: 1375-1383, 1998Google Scholar
  186. 186.
    Hall A: Rho GTPases and the actin cytoskeleton. Science 279: 509-514, 1998Google Scholar
  187. 187.
    Keely P, Parise L, Juliano R: Integrins and GTPases in tumour cell growth, motility and invasion. Trends Cell Biol 8: 101-106, 1998Google Scholar
  188. 188.
    Michiels F, Collard JG: Rho-like GTPases: their role in cell adhesion and invasion. Biochem Soc Symp 65: 125-146, 1999Google Scholar
  189. 189.
    Nobes CD, Hall A: Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 144: 1235-1244, 1999Google Scholar
  190. 190.
    Maidment SL: The cytoskeleton and brain tumour cell migration. Anticancer Res 17: 4145-4149, 1997Google Scholar
  191. 191.
    Ponta H, Sleeman J, Dall P, Moll J, Sherman L, Herrlich P: CD44 isoforms in metastatic cancer. Invasion Metastasis 14: 82-86, 1994Google Scholar
  192. 192.
    Sneath RJ, Mangham DC: The normal structure and function of CD44 and its role in neoplasia. Mo Pathol 51: 191-200, 1998Google Scholar
  193. 193.
    Zoller M: CD44: physiological expression of distinct isoforms as evidence for organ-specific metastasis formation. J Mol Med 73: 425-438, 1995Google Scholar
  194. 194.
    Van der Voort R, Taher TE, Wielenga VJ, Spaargaren M, Prevo R, Smit L, David G, Hartmann G, Gherardi E, Pals ST: Heparan sulfate-modified CD44 promotes hepatocyte growth factor/scatter factor-induced signal transduction through the receptor tyrosine kinase c-Met. J Biol Chem 274: 6499-6506, 1999Google Scholar
  195. 195.
    Bourguignon LY, Zhu H, Shao L, Chen YW: CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. J Biol Chem 275: 1829-1838, 2000Google Scholar
  196. 196.
    Frisch SM, Ruoslahti E: Integrins and anoikis. Curr Opin Cell Biol 9: 701-706, 1997Google Scholar
  197. 197.
    O'Connell J, O'Sullivan GC, Collins JK, Shanahan F: The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med 184: 1075-1082, 1996Google Scholar
  198. 198.
    Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S: Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74: 181-273, 2000Google Scholar
  199. 199.
    Schlom J, Hodge JW: The diversity of T-cell co-stimulation in the induction of antitumor immunity. Immunol Rev 170: 73-84, 1999Google Scholar
  200. 200.
    Saiki I, Murata J, Iida J, Sakurai T, Nishi N, Matsuno K, Azuma I: Antimetastatic effects of synthetic polypeptides containing repeated structures of the cell adhesive Arg-Gly-Asp (RGD) and Tyr-Ile-Gly-Ser-Arg (YIGSR) sequences. Br J Cancer 60: 722-728, 1989Google Scholar
  201. 201.
    Paget S: The distribution of secondary growths in cancer of the breast. 1889 (classical article). Cancer Metastasis Rev 8: 98-101, 1889Google Scholar
  202. 202.
    Pasqualini R, Ruoslahti E: Organ targeting in vivo using phage display peptide libraries. Nature 380: 364-366, 1996Google Scholar
  203. 203.
    Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E: Aminopeptidase N is a receptor for tumorhoming peptides and a target for inhibiting angiogenesis. Cancer Res 60: 722-727, 2000Google Scholar
  204. 204.
    Wylie S, MacDonald IC, Varghese HJ, Schmidt EE, Morris VL, Groom AC, Chambers AF: The matrix metalloproteinase inhibitor batimastat inhibits angiogenesis in liver metastases of B16F1 melanoma cells. Clin Exp Metastasis 17: 111-117, 1999Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Craig P. Webb
    • 1
  • George F. Vande Woude
    • 1
  1. 1.Van Andel Research InstituteGrand RapidsUSA

Personalised recommendations