Plant Molecular Biology

, Volume 44, Issue 2, pp 231–243

Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification

  • Lars Østergaard
  • Kaare Teilum
  • Osman Mirza
  • Ole Mattsson
  • Morten Petersen
  • Karen G. Welinder
  • John Mundy
  • Michael Gajhede
  • Anette Henriksen
Article

Abstract

Lignins are phenolic biopolymers synthesized by terrestrial, vascular plants for mechanical support and in response to pathogen attack. Peroxidases have been proposed to catalyse the dehydrogenative polymerization of monolignols into lignins, although no specific isoenzyme has been shown to be involved in lignin biosynthesis. Recently we isolated an extracellular anionic peroxidase, ATP A2, from rapidly lignifying Arabidopsis cell suspension culture and cloned its cDNA. Here we show that the Atp A2 promoter directs GUS reporter gene expression in lignified tissues of transgenic plants. Moreover, an Arabidopsis mutant with increased lignin levels compared to wild type shows increased levels of ATP A2 mRNA and of a mRNA encoding an enzyme upstream in the lignin biosynthetic pathway. The substrate specificity of ATP A2 was analysed by X-ray crystallography and docking of lignin precursors. The structure of ATP A2 was solved to 1.45 Å resolution at 100 K. Docking of p-coumaryl, coniferyl and sinapyl alcohol in the substrate binding site of ATP A2 were analysed on the basis of the crystal structure of a horseradish peroxidase C-CN-ferulic acid complex. The analysis indicates that the precursors p-coumaryl and coniferyl alcohols are preferred by ATP A2, while the oxidation of sinapyl alcohol will be sterically hindered in ATP A2 as well as in all other plant peroxidases due to an overlap with the conserved Pro-139. We suggest ATP A2 is involved in a complex regulation of the covalent cross-linking in the plant cell wall.

Arabidopsis thaliana lignification monolignols plant peroxidase promoter X-ray structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barkholt, V. and Jensen, A.L. 1989. Amino acid analysis: dertermination of cysteine plus half-cystine in proteins after hydrochloric acid hydrolysis with a disulfide compound as additive. Anal. Biochem. 177: 318–322.PubMedGoogle Scholar
  2. Bechtold, N., Ellis, J. and Pelletier, G.X. 1993. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis plants. C. R. Acad. Sci. Paris. Life Sci. 316: 1194–1199.Google Scholar
  3. Bernards, M.A., Fleming, W.D., Llewellyn, D.B., Priefer, R., Yang, X., Sabatino, A. and Plourde, G.L. 1999. Biochemical characterization of the suberization-associated anionic peroxidase of potato. Plant Physiol. 121: 135–146.PubMedGoogle Scholar
  4. Boudet, A.M., Lapierre, C. and Grima-Pettenati, J. 1995. Biochemistry and molecular biology of lignification. New Phytol. 129: 203–236.Google Scholar
  5. Chabanet, A., Catesson, A.M. and Goldberg, R. 1993. Peroxidase and phenolase activities in mung bean hypocotyl cell walls. Phytochemistry 33: 759–763.Google Scholar
  6. Chabanet, A., Goldberg, R., Catesson, A.M., Quinet-Szely, M., Delaunay, A.M. and Faye, L. 1994. Characterization and localization of a phenol oxidase in mung bean hypocotyl cell walls. Plant Physiol. 106: 1095–1102.PubMedGoogle Scholar
  7. Church, D.L. and Galston, A.W. 1988. 4-Coumarate:coenzyme A ligase and isoperoxidase expression in Zinnia mesophyl cells induced to differentiate into tracheary elements. Plant Physiol. 88: 679–684.PubMedGoogle Scholar
  8. Dunford, H.B. 1991. Horseradish peroxidase: structure and kinetic properties. In: J. Everse and M.B. Grisham (Eds.) Peroxidases in Chemistry and Biology, CRC Press, Boca Raton, FL, pp. 1–24.Google Scholar
  9. Edwards, S.L. and Poulos, T.L. 1990. Ligand binding and structural perturbations in cytochrome c peroxidase: a crystallographic study. J. Biol. Chem. 265: 2588–2595.PubMedGoogle Scholar
  10. Engh, R.A. and Huber, R. 1991. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr. A47: 392–400.Google Scholar
  11. Finzel, B.C., Poulos, T.L. and Kraut, J. 1984. Crystal structure of yeast cytochrome c peroxidase refined at 1.7-Å resolution. J. Biol. Chem. 259: 13027–13036.PubMedGoogle Scholar
  12. Fukuyama, K., Kunishima, N., Amada, F., Kubota, T. and Matsubara, H. 1995. Crystal structures of cyanide-and triiodide-bound forms of Arthromyces ramosus peroxidase at different pH values. Perturbations of active site residues and their implication in enzyme catalysis. J. Biol. Chem. 270: 21884–21892.PubMedGoogle Scholar
  13. Gajhede, M., Schuller, D.J., Henriksen, A., Smith, A.T. and Poulos, T.L. 1997. Crystal structure of horseradish peroxidase C at 2.15 Å resolution. Nature Struct. Biol. 4: 1032–1038.PubMedGoogle Scholar
  14. Gang, D.R., Costa, M.A., Fujita, M., Dinkova-Kostova, A.T., Wang, H.-B., Burlat, V., Martin, W., Sarkanen, S., Davin, L.B. and Lewis, N.G. 1999. Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chem. Biol. 6: 143–151.CrossRefPubMedGoogle Scholar
  15. Gazarian, I.G., Ashby, G.A., Thorneley, R.N.F. and Lagrimini, L.M. 1996. Study of indole-3-acetic acid oxidation by molecular oxygen catalyzed by horseradish and tobacco peroxidases. In: C. Obinger, U. Burner, R. Ebermann, C. Penel, and H. Greppin (Eds.) Plant Peroxidases: Biochemistry and Physiology, University of Geneva, Geneva, pp. 70–75.Google Scholar
  16. Glusker, J.P. 1991. Structural aspects of ligand binding to functional groups in proteins. Adv. Protein Chem. 42: 1–76.PubMedGoogle Scholar
  17. Henriksen, A., Schuller, D.J., Meno, K., Welinder, K.G., Smith, A.T. and Gajhede, M. 1998. Structural interactions between horseradish peroxidase C and the substrate benzhydroxamic acid determined by X-ray crystallography. Biochemistry 37: 8054–8060.PubMedGoogle Scholar
  18. Henriksen, A., Smith, A.T. and Gajhede, M. 1999. The structures of the horseradish peroxidase C-ferulic acid complex and the ternary complex with cyanide suggest how peroxidases oxidize small phenolic substrates. J. Biol. Chem. 274: 35005–35011.PubMedGoogle Scholar
  19. Higo, K., Ugawa, Y., Iwamoto, M. and Korenaga, T. 1999. Plant cis-acting regulatory DNA elements (PLACE) database. Nucl. Acids Res. 27: 297–300.PubMedGoogle Scholar
  20. Ito, H., Hiraga, S., Tsugawa, H., Matsui, H., Honma, M., Otsuki, Y., Murakami, T. and Ohashi, Y. 2000. Xylem-specific expression of wound-inducible rice peroxidase genes in transgenic plants. Plant Sci. 155: 85–100.PubMedGoogle Scholar
  21. Itzhaki, H., Maxson, J.M. and Woodson, W.R. 1994. An ethyleneresponsive enhancer element is involved in the senescencerelated expression of the carnation glutathione-S-transferase (GST1) gene. Proc. Natl. Acad. Sci. USA 91: 8925–8929.PubMedGoogle Scholar
  22. Jabs, T., Dietrich, R.A. and Dangl, J.L. 1996. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273: 1853–1856.PubMedGoogle Scholar
  23. Jones, A., Zou, J.Y., Cowan, S.W. and Kjeldgaard, M. 1991. Improved methods for building protein models in electron density maps and the location of errors in these maps. Acta Crystallogr. A47: 110–119.Google Scholar
  24. Kraulis, P.J. 1991. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24: 946–950.Google Scholar
  25. Lacombe, E., Hawkins, S., Doorsselaere, J.V., Piquemal, J., Goffner, D., Poeydomenge, O., Boudet, A.M. and Grima-Pettenati, J. 1997. Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J. 11: 429–441.PubMedGoogle Scholar
  26. Lagrimini, L.M. 1996. The role of the tobacco anionic peroxidase in growth and development. In: C. Obinger, U. Burner, R. Ebermann, C. Penel, and H. Greppin (Eds.) Plant Peroxidases: Biochemistry and Physiology, University of Geneva, Geneva, pp. 235–242.Google Scholar
  27. Lagrimini, L.M., Burkhart, W., Moyer, M. and Rothstein, S. 1987. Molecular cloning of a complementary DNA encoding the lignin-forming peroxidase from tobacco: molecular analysis and tissue-specific expression. Proc. Natl. Acad. Sci. USA. 84: 7542–7546.Google Scholar
  28. Lagrimini, L.M., Joly, R.J., Dunlap, J.R. and Liu, T.-T.Y. 1997. The consequence of peroxidase overexpression in transgenic plants on growth and development. Plant Mol. Biol. 33: 887–895.PubMedGoogle Scholar
  29. Lee, D., Ellard, M., Wanner, L.A., Davis, K.R. and Douglas, C.J. 1995. The Arabidopsis thaliana 4-coumarate:CoA ligase (4CL) gene: stress and developmentally regulated expression and nucleotide sequence of its cDNA. Plant Mol. Biol. 28: 871–884.PubMedGoogle Scholar
  30. Lewis, N.G., Davin, L.B. and Sarkanen, S. 1999. The nature and function of lignins. In: P.M. Pinto (Ed.) Carbohydrates and their Derivatives Including Tannins, Cellulose and Related Lignins, Elsevier, Amsterdam, pp. 617–745.Google Scholar
  31. Lewis, N.G. and Yamamoto, E. 1990. Lignin: occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 455–496.PubMedGoogle Scholar
  32. Li, L., Popko, J.L., Zhang, X.-H., Osakabe, K., Tsai, C.-J., Joshi, C.P. and Chiang, V.L. 1997. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine. Proc. Natl. Acad. Sci. USA 94: 5461–5466.PubMedGoogle Scholar
  33. Merritt, E.A. and Bacon, D.J. 1997. Raster3D: photorealistic molecular graphics. Meth. Enzymol. 277: 505–524.Google Scholar
  34. Milanesi, L., Muselli and Arrigo, P. 1996. Hamming clustering method for signals prediction in 5' and 3' regions of eukaryotic genes. Comput. Appl. Biosci. 12: 399–404.PubMedGoogle Scholar
  35. Millar, A.J., Short, S.R., Chua, N.-H. and Kay, S.A. 1992. A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4: 1075–1087.CrossRefPubMedGoogle Scholar
  36. Mohan, R., Bajar, A.M. and Kolattukudy, P.E. 1993. Induction of a tomato anionic peroxidase gene (tap1) by wounding in transgenic tobacco and activation of tap1/GUS and tap2/GUS chimeric gene fusions in transgenic tobacco by wounding and pathogen attack. Plant Mol. Biol. 21: 341–354.PubMedGoogle Scholar
  37. Montgomery, J., Goldman, S., Deikman, J., Margossian, L. and Fisher, R.L. 1993. Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc. Natl. Acad. Sci. USA 90: 5939–5943.PubMedGoogle Scholar
  38. Mundy, J., Mayer, R. and Chua, N.-H. 1995. Cloning genomic sequences using long-range PCR. Plant Mol. Biol. 13: 156–163.Google Scholar
  39. Mäder, M. and Füssl, R. 1982. Role of peroxidase in lignification of tobacco cells. Plant Physiol. 70: 1132–1134.Google Scholar
  40. Nagy, F., Kay, S.A. and Chua, N.-H. 1988. Analysis of gene expression in transgenic plants. In: S.B. Gelvin and R.A. Schilperoort (Eds.) Plant Molecular Biology Manual, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 1–29.Google Scholar
  41. Nakamura, W. 1967. Studies of the biosynthesis of lignins. I. Disproof against the catalytic activity of laccase in the oxidation of coniferyl alcohol. J. Biochem. 62: 54–61.PubMedGoogle Scholar
  42. Navaza, J. 1994. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A50: 157–163.Google Scholar
  43. Nose, M., Bernards, M.A., Furlan, M., Zajicek, J., Eberhardt, T.L. and Lewis, N.G. 1995. Towards the specification of consecutive steps in macromolecular lignin assembly. Phytochemistry 39: 71–79.PubMedGoogle Scholar
  44. Ogawa, K., Kanematsu, S. and Asada, K. 1996. Intra-and extracellular localization of 'cytosolic' CuZn-superoxide dismutase in spinach leaf and hypocotyl. Plant Cell Physiol. 37: 790–799.Google Scholar
  45. Ogawa, K., Kanematsu, S. and Asada, K. 1997. Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vacular tissue of spinach hypocotyls: their association with lignification. Plant Cell Physiol. 38: 1118–1126.PubMedGoogle Scholar
  46. Olson, P.D. and Varner, J.E. 1993. Hydrogen peroxide and lignification. Plant J. 4: 887–892.Google Scholar
  47. Østergaard, L., Abelskov, A.K., Mattsson, O. and Welinder, K.G. 1996. Structure and organ specificity of an anionic peroxidase from Arabidopsis thaliana cell suspension culture. FEBS Lett. 398: 243–247.PubMedGoogle Scholar
  48. Otwinowski, Z. and Minor, W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzymol 276: 307–326.Google Scholar
  49. Piquemal, J., Lapierre, C., Myton, K., O'Connell, A., Schuch, W., Grima-Pettenati, J. and Boudet, A.M. 1998. Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J. 13: 71–83.Google Scholar
  50. Poulos, T.L., Edwards, S.L., Wariishi, H. and Gold, M.H. 1993. Crystallographic refinement of lignin peroxidase at 2 Å. J. Biol. Chem. 268: 4429–4440.PubMedGoogle Scholar
  51. Quiroga, M., Guerrero, C., Botella, M.A., Barceló, A., Amaya, I., Medina, M.I., Alonso, F.J., de Forchetti, S.M., Tigier, H. and Valpuesta, V. 2000. A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol. 122: 1119–1127.PubMedGoogle Scholar
  52. Ruch, F. and Bosshardt, U. 1963. Photometrische Bestimmung von Stoffmengen im Fluoreszenz Mikroskop. Z. Wiss. Mikrosk. Mikrosk. Techn. 65: 335–341.Google Scholar
  53. Sato, Y., Sugiyama, M., Komamine, A. and Fukuda, H. 1995. Separation and characterization of the isozymes of wall-bound peroxidase from cultured Zinnia cells during tracheary element differentiation. Planta 196: 141–147.Google Scholar
  54. Shannon, L.M., Kay, E. and Lew, J.Y. 1966. Peroxidase isozymes from horseradish roots. I. Isolation and physical properties. J. Biol. Chem. 241: 2166–2172.PubMedGoogle Scholar
  55. Sheldrick, G.M. and Schneider, T.R. 1997. SHELXL: highresolution refinement. Meth. Enzymol. 277B: 319–343.Google Scholar
  56. Smith, C.G., Rodgers, M.W., Zimmerlin, A., Ferdinando, D. and Bolwell, G.P. 1994. Tissue and subcellular immunolocalisation of enzymes of lignin synthesis in differentiating and wounded hypocotyl tissue of French bean (Phaseolus vulgaris L.). Planta 192: 155–164.CrossRefGoogle Scholar
  57. Smulevich, G., Paoli, M., Burke, J.F., Sanders, S.A., Thorneley, R.-N.F. and Smith, A.T. 1994. Characterization of recombinant horseradish peroxidase C and three site-directed mutants F41V, F41W, and R38K, by resonance Raman spectroscopy. Biochemistry 33: 7398–7407.PubMedGoogle Scholar
  58. Sterjiades, R., Dean, J.F., Gamble, G., Himmelsbach, D.S. and Eriksson, K.-E.L. 1999. Extracellular laccases and peroxidases from sycamore maple (Acer pseudoplatanus) cell suspension cultures. Planta 190: 75–87.Google Scholar
  59. Sundaramoorthy, M., Kishi, K., Gold, M.H. and Poulos, T.L. 1994. The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-Å resolution. J. Biol. Chem. 269: 32759–32767.PubMedGoogle Scholar
  60. Sundaresan, V., Springer, P., Volpe, T., Jones, J.D.G., Dean, C., Ma, H. and Martienssen, R. 1995. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 9: 1797–1810.PubMedGoogle Scholar
  61. Takahama, U. 1995. Oxidation of hydroxycinnamic acid and hydroxycinnamyl alcohol derivatives by laccase and peroxidase. Interactions among p-hydroxyphenyl, guaiacyl and syringyl groups during the oxidation reaction. Physiol. Plant. 93: 61–68.Google Scholar
  62. Takahama, U. and Oniki, T. 1994. Effects of ascorbate on oxidation of hydroxycinnamic acid derivatives and the mechanism of oxidation of sinapic acid by cell wall bound peroxidases. Plant Cell Physiol. 35: 593–600.Google Scholar
  63. Teilum, K., Østergaard, L. and Welinder, K.G. 1999. Disulfide bond formation and folding of plant peroxidases expressed as inclusion body protein in Escherichia coli thioredoxin reductase negative strains. Protein Expr. Purif. 15: 77–82.PubMedGoogle Scholar
  64. Whetten, R.W., MacKay, J.J. and Sederoff, R.R. 1998. Recent advances in understanding lignin biosynthesis. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 49: 585–609.PubMedGoogle Scholar
  65. Yamazaki, I., Nakajima, R. 1986. Physico-chemical comparison between horseradish peroxidases A and C. In: H. Greppin, C. Penel and Th. Gaspar (Eds.) Molecular and Physiological Aspects of Plant Peroxidases, University of Geneva, Geneva, pp. 71–84.Google Scholar
  66. Ye, Z.-H., Kneusel, R.E., Matern, U. and Varner, J.E. 1994. An alternative methylation pathway in lignin biosynthesis in Zenia. Plant Cell 6: 1427–1439.CrossRefPubMedGoogle Scholar
  67. Zhong, R., Morrison, H. III, Negrel, J. and Ye, Z.-H. 1998. Dual methylation pathways in lignin biosynthesis. Plant Cell 10: 2033–2045.PubMedGoogle Scholar
  68. Zimmerlin, A., Wojtaszek, P. and Bolwell, G.P. 1994. Synthesis of dehydrogenation polymers of ferulic acid with high specificity by a purified cell-wall peroxidase from French bean (Phaseolus vulgaris L.). Biochem. J. 299: 747–753.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Lars Østergaard
    • 1
  • Kaare Teilum
    • 2
  • Osman Mirza
    • 3
  • Ole Mattsson
    • 1
  • Morten Petersen
    • 1
  • Karen G. Welinder
    • 2
  • John Mundy
    • 1
  • Michael Gajhede
    • 3
  • Anette Henriksen
    • 3
  1. 1.Department of Plant Physiology, Institute of Molecular BiologyUniversity of Copenhagen, ØKøbenhavn KDenmark
  2. 2.Department of Protein Chemistry, Institute of Molecular BiologyUniversity of Copenhagen, ØKøbenhavn KDenmark
  3. 3.Protein Structure Group, Department of ChemistryUniversity of CopenhagenKøbenhavn ØDenmark

Personalised recommendations