Advertisement

Journal of Neuro-Oncology

, Volume 50, Issue 3, pp 215–226 | Cite as

Relationships Between Choline Magnetic Resonance Spectroscopy, Apparent Diffusion Coefficient and Quantitative Histopathology in Human Glioma

  • Rakesh K. Gupta
  • Timothy F. Cloughesy
  • Usha Sinha
  • Justine Garakian
  • Jorge Lazareff
  • Gregory Rubino
  • Lisa Rubino
  • Donald P. Becker
  • Harry V. Vinters
  • Jeffry R. Alger
Article

Abstract

This study sought to correlate quantitative presurgical proton magnetic resonance spectroscopic imaging (1H- MRSI) and diffusion imaging (DI) results with quantitative histopathological features of resected glioma tissue. The primary hypotheses were (1) glioma choline signal correlates with cell density, (2) glioma apparent diffusion coefficient (ADC) correlates inversely with cell density, (3) glioma choline signal correlates with cell proliferative index. Eighteen adult glioma patients were preoperatively imaged with 1H-MRSI and DI as part of clinically-indicated MRI evaluations. Cell density and proliferative index readings were made on surgical specimens obtained at surgery performed within 12 days of the radiologic scans. The resected tissue location was identified by comparing preoperative and postoperative MRI. The tumor to contralateral normalized choline signal ratio (nCho) and the ADC from resected tumor regions were measured from the preoperative imaging data. Counts of nuclei per high power field in 5–10 fields provided a quantitative measure of cell density. MIB-1 immunohistochemistry provided an index of the proportion of proliferating cells. There was a statistically significant inverse linear correlation between glioma ADC and cell density. There was also a statistically significant linear correlation between the glioma nCho and the cell density. The nCho measure did not significantly correlate with proliferative index. The results indicate that both ADC and spectroscopic choline measures are related to glioma cell density. Therefore they may prove useful for differentiating dense cellular neoplastic lesions from those that contain large proportions of acellular necrotic space.

brain brain tumors MRI MR spectroscopy diffusion imaging glioma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duyn JH, Gillen J, Sobering G, van Zijl PC, Moonen CT: Multisection proton MR spectroscopic imaging of the brain. Radiology 188(1): 277-282, 1993Google Scholar
  2. 2.
    Fulham MJ, Bizzi A, Dietz MJ, Shih HH, Raman R, Sobering GS, Frank JA, Dwyer AJ, Alger JR, Di Chiro G: Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. Radiology 185: 675-686, 1992Google Scholar
  3. 3.
    Lazareff JA, Olmstead C, Bockhorst KH, Alger JR: Proton magnetic resonance spectroscopic imaging of pediatric low grade astrocytomas. Child's Nerv Syst 12: 130-35, 1996Google Scholar
  4. 4.
    Tedeschi G, Lundbom G, Raman R, Bonavita S, Duyn JH, Alger JR, Di Chiro G: Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg 8: 516-524, 1997Google Scholar
  5. 5.
    Wald LL, Nelson SJ, Dey MR, Noworolski SE, Henry RG, Huhn SL, Chang S, Prados MD, Sneed PK, Larson DA, Wara WM, McDermott M, Dillon WP, Gutin PH, Vigneron DB: Serial proton magnetic resonance spectroscopy imaging of glioblastoma multiforme after brachytherapy. J Neurosurg 87: 525-534, 1997Google Scholar
  6. 6.
    Go KG, Keuter EJ, Kamman RL, Pruim J, Metzemaekers JD, Staal MJ, Paans AM, Vaalburg W: Contribution of magnetic resonance spectroscopic imaging and L-[1-11C]tyrosine positron emission tomography to localization of cerebral gliomas for biopsy. Neurosurgery 34: 994-1002, 1994Google Scholar
  7. 7.
    Alger JR, Frank JA, Bizzi A, Fulham MJ, DeSouza BX, Duhaney MO, Inscoe SW, Black JL, van Zijl PC, Moonen CT, Di Chiro G: Metabolism of human gliomas: assessment with H-1 MR spectroscopy and F-18 fluorodeoxyglucose PET. Radiology 177: 633-641, 1990Google Scholar
  8. 8.
    Chang L, McBride D, Miller BL, Cornford M, Booth RA, Buchthal SD, Ernst TM, Jenden D: Localized it in vivo 1H magnetic resonance spectroscopy and in vitro analyses of heterogeneous brain tumors. J Neuroimaging 5: 157-163, 1995Google Scholar
  9. 9.
    Miller BL, Chang L, Booth R, Ernst T, Cornford M, Nikas D, McBride D, Jenden DJ: In vivo 1HMRScholine: correlation with in vitro chemistry/histology. Life Sci 58: 1929-935, 1996Google Scholar
  10. 10.
    Negendank WG, Sauter R, Brown TR, Evelhoch JL, Falini A, Gotsis ED, Heerschap A, Kamada K, Lee BC, Mengeot MM, Moser E, Padavic-Shaller KA, Sanders JA, Spraggins TA, Stillman AE, Terwey B, Vogl TJ, Wicklow K, Zimmerman RA: Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 84: 449-458, 1996Google Scholar
  11. 11.
    Ott D, Hennig J, Ernst T: Human brain tumors: assessment with in vivo proton MR spectroscopy. Radiology 186: 745-752, 1993Google Scholar
  12. 12.
    Speck O, Thiel T, Hennig J: Grading and therapy monitoring of astrocytomas with 1H-spectroscopy: preliminary study. Anticanc Res 16: 1581-1585, 1996Google Scholar
  13. 13.
    Sijens PE, Vecht CJ, Levendag PC, van Dijk P, Oudkerk M: Hydrogen magnetic resonance spectroscopy follow-up after radiation therapy of human brain cancer. Unexpected inverse correlation between the changes in tumor choline level and post gadolinium magnetic resonance imaging contrast. Invest Radiol 30: 738-744, 1995Google Scholar
  14. 14.
    Aiken NR, Gillies RJ: Phosphomonoester metabolism as a function of cell proliferative status and exogenous precursors. Anticanc Res 16: 1393-1397, 1996Google Scholar
  15. 15.
    Le Bihan D: Molecular diffusion nuclear magnetic resonance imaging. Magn Reson Q 7: 1-30, 1991Google Scholar
  16. 16.
    Baird A, Warach S: Magnetic Resonance Imaging of acute stroke. J Cereb Blood Flow Metab 18: 583-609, 1998Google Scholar
  17. 17.
    Brunberg JA, Chenevert TL, McKeever PE, Ross DA, Junck LR, Muraszko KM, Dauser R, Pipe JG, Betley AT: In vivo 226 MR determination of water diffusion coefficients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres. Am J Neuroradiol 16: 361-371, 1995Google Scholar
  18. 18.
    Krabbe K, Gideon P, Wagn P, Hansen U, Thomsen C, Madsen F: MR diffusion imaging of human intracranial tumors. Neuroradiology 39: 483-489, 1997Google Scholar
  19. 19.
    Le Bihan D, Douek P, Argyropoulou M, Turner R, Patronas N, Fulham M: Diffusion and perfusion magnetic resonance imaging in brain tumors. Top Magn Reson Imag 5: 25-31, 1993Google Scholar
  20. 20.
    Tien RD, Felsberg GL, Friedman H, Brown M, Mac-Fall J: MR imaging of high grade cerebral gliomas: value of diffusion weighted echoplanar pulse sequences. Am J Roentgenol 162: 671-677, 1993Google Scholar
  21. 21.
    Gupta RK, Sinha U, Cloughesy TF, Alger JR: Inverse correlation between choline magnetic resonance spectroscopy signal intensity and the apparent diffusion coefficient in human glioma. Magn Reson Med 41: 2-7, 1999Google Scholar
  22. 22.
    Yanaka K, Shirai S, Kimura H, Kamezaki T, Matsumuna A, Nose T: Clinical application of diffusion-weighted magnetic resonance imaging to intracranial disorders. Neurol Med Chr (Tokyo) 35: 648-654, 1995Google Scholar
  23. 23.
    Daumas-Duport C, Scheithauer B, O'Fallon J, Kelly P: Grading of astrocytomas: a simple and reproducible method. Cancer 62: 2152-2165, 1988Google Scholar
  24. 24.
    Coons SW, Johnson PC: Regional heterogeneity in the proliferative activity of human gliomas as measured by the Ki-67 labeling index. J Neuropath Exp Neurol 52: 609-618, 1993Google Scholar
  25. 25.
    Preul MC, Caramanos Z, Collins DL, Villemure JG, Leblanc R, Olivier A, Pokrupa R, Arnold DL: Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nature Med 2: 323-325, 1996Google Scholar
  26. 26.
    Gill SS, Thomas DG, Van Bruggen N, Gadian DG, Peden CJ, Bell JD, Cox IJ, Menon DK, Iles RA, Bryant DJ: Proton MR spectroscopy of intracranial tumours: in vivo and in vitro studies. J Comp Assist Tomogr 14: 497-504, 1990Google Scholar
  27. 27.
    Carapella CM, Carpinelli G, Knijn A, Raus L, Caroli F, Podo F: Potential role of in vitro 1H magnetic resonance spectroscopy in the definition of malignancy grading of human neuroepithelial brain tumours. Acta Neurochirurgica (Supple.) 68: 127-132, 1997Google Scholar
  28. 28.
    Schiffer D, Cavalla P, Migheli A, ChióA, Giordana MT, Marino S, Attanasio A: Apoptosis and cell proliferation in human neuroepithelial tumors. Neurosci Lett 195: 81-84, 1995Google Scholar
  29. 29.
    Nunn AV, Barnard ML, Bhakoo K, Murray J, Chilvers EJ, Bell JD: Characterisation of secondary metabolites associated with neutrophil apoptosis. FEBS Lett 392: 295-298, 1996Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Rakesh K. Gupta
    • 1
  • Timothy F. Cloughesy
    • 2
    • 3
  • Usha Sinha
    • 1
  • Justine Garakian
    • 4
  • Jorge Lazareff
    • 5
  • Gregory Rubino
    • 5
  • Lisa Rubino
    • 5
  • Donald P. Becker
    • 5
  • Harry V. Vinters
    • 4
    • 6
  • Jeffry R. Alger
    • 1
    • 3
    • 6
  1. 1.Department of Radiological SciencesUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of NeurologyUniversity of CaliforniaLos AngelesUSA
  3. 3.Jonsson Comprehensive Cancer CenterUniversity of CaliforniaLos AngelesUSA
  4. 4.Department of Pathology and Laboratory Medicine (Neuropathology)University of CaliforniaLos AngelesUSA
  5. 5.Department of Surgery, Division of NeurosurgeryUniversity of CaliforniaLos AngelesUSA
  6. 6.Brain Research InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations