Journal of Neuro-Oncology

, Volume 47, Issue 1, pp 11–22 | Cite as

Extracellular Glutamate and Other Metabolites in and Around RG2 Rat Glioma: An Intracerebral Microdialysis Study

  • P.F. Behrens
  • H. Langemann
  • R. Strohschein
  • J. Draeger
  • J. Henning


The current study determined the extracellular content of glutamate, 10 additional amino acids, lactate, glucose and some antioxidants in a rodent model of malignant glioma, its peritumoral space and the adjacent cortex. RG2 tumors were induced in the right frontal cortex of Fischer-344 rats (n=10) by a standardized procedure to obtain a maximum sagittal tumor width of 3–4 mm diameter. After confirmation of tumor growth and localization by contrast enhanced MRI three microdialysis probes were implanted simultaneously in the cortex: at the tumor implantation site (tumor), 2 mm caudally, brain around tumor (BAT) and 4 mm caudally (cortex) to the site of implantation. Dialysate concentrations of glutamate were increased 3.9-fold in tumor and 2-fold in BAT compared with cortex. Glycine was elevated 11.4-fold in tumor and 2.6-fold in BAT. Lactate was increased 1.7-fold in tumor, 1.2-fold in BAT. Levels of glucose, ascorbic acid and uric acid were not significantly different in tumor, BAT and cortex. The increased dialysate levels of glutamate and glycine in the peritumoral space may contribute to impaired neuronal function and epileptiform activity associated with this tumor type in humans.

rat glioma in vivo microdialysis glutamate amino acids glucose lactate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Labrakakis C, Patt S, Weydt P, Cervos-Navarro J, Meyer R, Kettenmann H: Action potential-generating cells in human glioblastomas. J Neuropathol Exp Neurol 56: 243-254, 1997Google Scholar
  2. 2.
    Klegeris A, Walker DG, McGeer PL: Regulation of glutamate in cultures of human monocytic THP-1 and astrocytoma U-373 MG cells. J Neuroimmunol 78: 152-161, 1997Google Scholar
  3. 3.
    Sontheimer H, Ye Z-C: Excitotoxicity of glutamate released from human glioma cells in vitro. Soc Neurosci Abstr 24: 179.5, 1998Google Scholar
  4. 4.
    Landolt H, Langemann H, Probst A, Gratzl O: Levels of water-soluble antioxidants in astrocytoma and in adjacent tumor-free tissue. J Neuro-Oncol 21: 127-133, 1994Google Scholar
  5. 5.
    Wechsler W, Ramadan MA, Gieseler A: Isogenic transplantation of ethylnitrosourea-induced tumors of the central and peripheral nervous system in two different inbred rat strains. Naturwissenschaften 59: 474, 1972Google Scholar
  6. 6.
    Ko L, Koestner A, Wechsler W: Morphological characterization of nitrosourea-induced glioma cell lines and clones. Acta Neuropathol (Berl) 51: 23-31, 1980Google Scholar
  7. 7.
    Ko L, Koestner A, Wechsler W: Characterization of cell cycle and biological parameters of transplantable glioma cell lines and clones. Acta Neuropathol (Berl) 51: 107-111, 1980Google Scholar
  8. 8.
    Aas AT, Brun A, Blennow C, Stromblad S, Salford LG: The RG2 rat glioma model. J Neuro-Oncol 23: 175-183, 1995Google Scholar
  9. 9.
    Reynolds DS, Morton AJ: Changes in blood-brain barrier permeability following neurotoxic lesions of rat brain can be visualised with trypan blue. J Neurosci Meth 79: 115-121, 1998Google Scholar
  10. 10.
    Arnold JB, Kraig RP, Rottenberg DA: In vivo measurement of regional brain and tumor pH using [14C]dimethyloxazolidinedione and quantitative autoradiography. II: Characterization of the extracellular fluid compartment using pH-sensitive microelectrodes and [14C]sucrose. J Cereb Blood Flow Metab 6: 435-440, 1986Google Scholar
  11. 11.
    Jacobson I, Sandberg M, Hamberger A: Mass transfer in brain dialysis devices-a new method for the estimation of extracellular amino acids concentration. J Neurochem 52: 1741-1750, 1985Google Scholar
  12. 12.
    Godel H, Graser T, Foldi P, Furst P: Measurement of free amino acids in human biological fluids by high-performance liquid chromatography. J Chromatogr 297: 49-61, 1984Google Scholar
  13. 13.
    Graser T, Godel HG, Albers S, Foldi P, Furst P: An ultra rapid and sensitive high-performance liquid chromatographic method for determination of tissue and plasma free amino acids. Anal Biochem 151: 142-152, 1985Google Scholar
  14. 14.
    Landolt H, Lutz TW, Langemann H, Stäuble D, Mendelowitsch A, Gratzl O, Honegger CG: Extracellular antioxidants and amino acids in the cortex of the rat: monitoring by microdialysis of early changes. J Cereb Blood Flow Metab 12: 96-102, 1992Google Scholar
  15. 15.
    Barth R: Rat brain tumor models in experimental neurooncology: the 9L, C6, F98 RG2 (D74), RT-2 and CNS-1 gliomas. J Neuro-Oncol 36: 91-102, 1998Google Scholar
  16. 16.
    Groothuis DR, Fischer JM, Pasternak JF, Blasberg RG, Vick NA, Bigner DD: Regional measurements of blood-totissue transport in experimental RG-2 rat gliomas. Cancer Res 43: 3368-3373, 1983Google Scholar
  17. 17.
    Groothuis DR, Pasternak JF, Fischer JM, Blasberg RG, Bigner DD, Vick NA: Regional measurements of blood flow in experimental RG-2 rat gliomas. Cancer Res 43: 3362-3367, 1983Google Scholar
  18. 18.
    Hossmann KA, Mies G, Paschen W, Szabo L, Dolan E, Wechsler W: Regional metabolism of experimental brain tumors. Acta Neuropathol (Berl) 69: 139-147, 1986Google Scholar
  19. 19.
    Molnar P, Lapin GD, Groothuis DR: The effects of dexamethasone on experimental brain tumors: I. Transcapillary transport and blood flowin RG-2 rat gliomas. J Neuro-Oncol 25: 19-28, 1995Google Scholar
  20. 20.
    Baethmann A, Maier-Hauff K, Schurer L, Lange M, Guggenbichler C, Vogt W, Jacob K, Kempski O: Release of glutamate and of free fatty acids in vasogenic brain edema. J Neurosurg 70: 578-591, 1989Google Scholar
  21. 21.
    Benveniste H, Hansen AJ, Ottosen NS: Determination of brain interstitial concentrations by microdialysis. J Neurochem 52: 1741-1750, 1989Google Scholar
  22. 22.
    Rapoport SI: Blood-Brain Barrier in Physiology and Medicine. Raven press, New York, 1976Google Scholar
  23. 23.
    Bianchi L, Colivicchi MA, Melani A, DeMicheli E, Pinna G, Alfieri A, Casamenti F, Della Corte L: Extracellular levels of amino acids, adenosine and choline in human brain malignant gliomas: an intraoperative microdialysis study. Soc Neurosci Abstr 24: 857.4, 1998Google Scholar
  24. 24.
    Nicholls D, Attwell D: The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11: 462-468, 1990Google Scholar
  25. 25.
    Ye ZC, Sontheimer H: Astrocytes protect neurons from neurotoxic injury by serum glutamate. GLIA 22: 237-248, 1998Google Scholar
  26. 26.
    Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF: Knockout of glutamate transporters 21 reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16: 675-686, 1996Google Scholar
  27. 27.
    Robinson MB, Dowd LA: Heterogeneity and functional properties of subtypes of sodium-dependent glutamate transporters in the mammalian central nervous system. Adv Pharmacol 37: 69-115, 1997Google Scholar
  28. 28.
    Vandenberg RA: Molecular pharmacology and physiology of glutamate transporters in the central nervous system. Clin Exp Pharmacol Physiol 25: 393-400, 1998Google Scholar
  29. 29.
    Palos TP, Ramachandran B, Boado R, Howard BD: Rat C6 and human astrocytic tumor cells express a neuronal type of glutamate transporter. Brain Res 37: 297-303, 1996Google Scholar
  30. 30.
    Davis KE, Straff DA, Weinstein EA, Bannerman PG, Correale DM, Rothstein JD, Robinson MB: Multiple signaling pathways regulate cell surface expression and activity of the excitatory amino acid carrier 1 subtype of Glu transporter in C6 glioma. J Neurosci 18: 2475-2485, 1998Google Scholar
  31. 31.
    Dunlop J, Lou Z, and McIlvain HB: Evaluation of 1-glutamate transport in the human astrocytoma cell lines U87, U118, U138 and U373. Soc Neurosci Abstr 24: 826.6, 1998Google Scholar
  32. 32.
    Cho Y, Bannai S: Uptake of glutamate and cysteine in C-6 glioma cells and in cultured astrocytes. J Neurochem 55: 2091-2097, 1990Google Scholar
  33. 33.
    Nieuwenhuys R: Chemoarchitecture of the Brain. Springer, Berlin, 1985Google Scholar
  34. 34.
    Kleckner NW, Dingledine R: Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241: 835-837, 1988Google Scholar
  35. 35.
    Oldendorf WH, Szabo J: Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am J Physiol 230: 94-98, 1976Google Scholar
  36. 36.
    Benrabh H, Lefauconnier JM: Glutamate is transported across the rat blood-brain barrier by a sodium-independent system. Neurosci Lett 210: 9-12, 1996Google Scholar
  37. 37.
    Yudkoff M: Brain metabolism of branched-chain amino acids. GLIA 21: 92-98, 1997Google Scholar
  38. 38.
    Hawkins RA, DeJoseph MR, Hawkins PA: Regional brain glutamate transport in rats at normal and raised concentrations of circulating glutamate. Cell Tissue Res 281: 207-214, 1995Google Scholar
  39. 39.
    Fross RD, Warnke PC, Groothuis DR: Blood flow and blood-to-tissue transport in 9L gliosarcomas: the role of the brain tumor model in drug delivery research. J Neuro-Oncol 11: 185-197, 1991Google Scholar
  40. 40.
    Nakagawa H, Groothuis DR, Owens ES, Fenstermacher AD, Patlak CS, Blasberg RG: Dexamethasone effects on [125I]albumin distribution in experimental RG-2 gliomas and adjacent brain. J Cereb Blood Flow Metab 7: 687-701, 1987Google Scholar
  41. 41.
    Koenig H, Trout JJ, Goldstone AD, Lu CY: Capillary NMDA receptors regulate blood-brain barrier function and breakdown. Brain Res 588: 297-303, 1992Google Scholar
  42. 42.
    Westergren I, Johansson BB: Blockade of AMPA receptors reduces brain edema following opening of the blood-brain barrier. J Cereb Blood Flow Metab 13: 603-608, 1993Google Scholar
  43. 43.
    Westergren I, Nystrom B, Hamberger A, Nordborg C, Johansson BB: Concentrations of amino acids in extracellular fluid after opening of the blood-brain barrier by intracarotid infusion of protamine sulfate. J Neurochem 62: 159-165, 1994Google Scholar
  44. 44.
    Mayhan WG, Didion SP: Glutamate-induced disruption of the blood-brain barrier in rats. Role of nitric oxide. Stroke 27: 965-969, 1996Google Scholar
  45. 45.
    Miller RD, Monsul NT, Vender JR, Lehmann JC: NMDA and endothelin-1-induced increases in blood-brain barrier permeability quantitated with Lucifer yellow. J Neurol Sci 136: 37-40, 1996Google Scholar
  46. 46.
    Morley P, Small DL, Murray CL, Mealing GA, Poulter MO, Durkin JP, Stanimirovic DB: Evidence that functional glutamate receptors are not expressed on rat or human cerebromicrovascular endothelial cells V. J Cereb Blood Flow Metab 18: 396-406, 1998Google Scholar
  47. 47.
    Preston E, Webster J, Palmer GC: Lack of evidence for direct involvement of NMDA receptors or polyamines in blood-brain barrier injury after cerebral ischemia in rats. Brain Res 8l3: 191-194, 1998Google Scholar
  48. 48.
    Kimelberg HK, Rutledge E, Goderie S, Charniga C: Astrocytic swelling due to hypotonic or high KC medium causes inhibition of glutamate and aspartate uptake and increases their release. J Cereb Blood Flow Metab 15: 409-416, 1995Google Scholar
  49. 49.
    Kimelberg HK: Current concepts of brain edema. Review of laboratory investigations. J Neurosurg 83: 1051-1059, 1995Google Scholar
  50. 50.
    Hagberg H, Lehmann A, Sandberg M, Nystrom B, Jacobson I, Hamberger A: Ischemia-induced shift of inhibitory and excitatory amino acids from intra-to extracellular compartments. J Cereb Blood Flow Metab 5: 413-419, 1985Google Scholar
  51. 51.
    Morimoto T, Globus MY, Busto R, Martinez E, Ginsberg MD: Simultaneous measurement of salicylate hydroxylation and glutamate release in the penumbral cortex following transient middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 16: 92-99, 1996Google Scholar
  52. 52.
    Palmer AM, Marion DW, Botscheller ML, Swedlow PE, Styren SD, DeKosky ST: Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. J Neurochem 61: 2015-2024, 1993Google Scholar
  53. 53.
    Bullock R, Zauner A, Woodward JJ, Myseros J, Choi SC, Ward AD, Marmarou A, Young HF: Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg 89: 507-518, 1998Google Scholar
  54. 54.
    Hossmann KA: Glutamate-mediated injury in focal cerebral ischemia: the excitotoxin hypothesis revised. Brain Pathol 4: 23-36, 1994Google Scholar
  55. 55.
    Meldrum BS: The role of glutamate in epilepsy and other CNS disorders. Neurology 44: S14-S23, 1994Google Scholar
  56. 56.
    Kanda T, Kurokawa M, Tamura S, Nakamura J, Ishii A, Kuwana Y, Serikawa T, Yamada J, Ishihara K, Sasa M: Topiramate reduces abnormally high extracellular levels of glutamate and aspartate in the hippocampus of spontaneously epileptic rats (SER). Life Sci 59: 1607-1616, 1996Google Scholar
  57. 57.
    Moots PL, Maciunas RJ, Eisert DR, Parker RJ, Laporte K, Abou-Khalil B: The course of seizure disorders in patients with malignant gliomas. Arch Neurol 52: 717-724, 1995Google Scholar
  58. 58.
    Lehmann A: Effects of microdialysis-perfusion with anisoosmotic media on extracellular amino acids in the rat hippocampus and skeletal muscle. J Neurochem 53: 525-535, 1989Google Scholar
  59. 59.
    Oja SS, Saransaari P: Taurine as osmoregulator and neuromodulator in the brain. Metab Brain Dis 11: 153-164, 1996Google Scholar
  60. 60.
    Tsacopoulos M, Poitry-Yamate CL, Poitry S, Perrottet P, Veuthey AL: The nutritive function of glia is regulated by signals released by neurons. GLIA 21: 84-91, 1997Google Scholar
  61. 61.
    Terpstra M, High WB, Luo Y, de Graaf RA, Merkle H, Garwood M: Relationships among lactate concentration, blood flow and histopathologic profiles in rat C6 glioma. NMR Biomed 9: 185-194, 1996Google Scholar
  62. 62.
    Oudard S, Boitier E, Miccoli L, Rousset S, Dutrillaux B, Poupon MF: Gliomas are driven by glycolysis: putative roles of hexokinase, oxidative phosphorylation and mitochondrial ultrastructure. Anticancer Res 17: 1903-1911, 1997Google Scholar
  63. 63.
    Go KG, Krikke AP, Kamman RL, Heesters MA: The origin of lactate in peritumoral edema as measured by proton magnetic resonance spectroscopic imaging. Acta Neurochir Suppl (Wien) 70: 173-175, 1997Google Scholar
  64. 64.
    Volk C, Kempski B, Kempski OS: Inhibition of lactate export by quercetin acidifies rat glial cells in vitro. Neurosci Lett 223: 121-124, 1997Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • P.F. Behrens
    • 1
  • H. Langemann
    • 2
  • R. Strohschein
    • 3
  • J. Draeger
    • 1
  • J. Henning
    • 3
  1. 1.Department of Neurology, Section of Medical PhysicsAlbert-Ludwigs UniversitätFreiburgGermany
  2. 2.Department of Radiology, Section of Medical PhysicsAlbert-Ludwigs UniversitätFreiburgGermany
  3. 3.Section of Neurosurgery, Department of ResearchCantonal HospitalBaselSwitzerland

Personalised recommendations