Plant Molecular Biology

, Volume 42, Issue 6, pp 899–913

Cloning, mapping and expression analysis of barley MADS-box genes

  • Jürgen Schmitz
  • Rainer Franzen
  • Thi Ha Ngyuen
  • Federico Garcia-Maroto
  • Carlo Pozzi
  • Francesco Salamini
  • Wolfgang Rohde


Six MADS-box cDNA clones were isolated by heterologous screening from a barley inflorescence cDNA library. Based on sequence comparison to known MADS-box genes, the barley MADS-box (BM) genes were grouped into three distinct phylogenetic subclasses of the MADS-box gene family. The three MADS-box genes BM3, BM5 and BM8 share similarities with genes of the SQUAMOSA (SQUA) subgroup, while BM7 and BM9 belong to the AGAMOUS-LIKE 2 (AGL2) subgroup. BM1 resembles MADS-box genes described as solitary sequences or orphan genes. Expression analysis of the barley MADS-box genes revealed expression patterns that are not characteristic of the barley MADS-box genes of the SQUA subgroup, while expression of BM7 and BM9 was largely as expected for the AGL2 subgroup. BM1 is mainly expressed in vegetative tissues and its primary transcript undergoes alternative splicing such that the corresponding mRNAs differ by two codons. The genes BM1, BM3 and BM8 were mapped by analysis of single-nucleotide polymorphisms onto barley chromosomes 4, 2 and 7, respectively.

alternative splicing flower development homeotic genes Hordeum vulgare mutants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bossinger, G., Rohde, W., Lundqvist, U. and Salamini, F. 1992. Genetics of barley development: mutant phenotypes and molecular aspects. In: P.R. Shewry (Ed.), Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology, CAB International, Wallingford, UK, pp. 231–263.Google Scholar
  2. Bowman, J.L., Smyth, D.R. and Meyerowitz, E.M. 1991. Genetic interactions among floral homeotic genes of Arabidopsis. Development 112: 1–20.Google Scholar
  3. Carmona, M.J., Ortega, N. and Garcia-Maroto, F. 1998. Isolation and molecular characterisation of a new vegetative MADS-box gene from Solanum tuberosum L. Planta 207:181–188.Google Scholar
  4. Castiglioni, P., Pozzi, C., Heun, M., Terzi, V., Müller, K.J., Rohde, W. and Salamini, F. 1998. An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genetics 149: 2039–2056.Google Scholar
  5. Chung, Y.Y., Kim, S.R., Finkel, D., Yanofsky, M.F. and An, G. 1994. Early flowering and reduced apical dominance result from ectopic expression of a rice MADS-box gene. Plant Mol. Biol. 26: 657–665.Google Scholar
  6. Chung, Y.Y., Kim, S.R., Kang, H.G., Noh, Y.S., Park, M.C., Finkel, D. and An, G. 1995. Characterisation of two rice MADS-box genes homologous to GLOBOSA. Plant Sci. 109: 45–56.Google Scholar
  7. Coen, E.S. and Meyerowitz, E.M. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353: 31–37.Google Scholar
  8. Davies, B. and Schwarz-Sommer, Zs. 1994. Control of floral organ identity by homeotic MADS-box transcription factors. Res. Probl. Cell Differ. 20: 235–258.Google Scholar
  9. Davies, B., Egea-Cortines, M., de Andrade Silva, E., Saedler, H., Sommer, H. 1996. Multiple interactions amongst floral homeotic MADS-box proteins. EMBO J. 15: 4330–4343.Google Scholar
  10. Davies, B., Motte, P., Keck, E., Saedler, H., Sommer, H. and Schwarz-Sommer, Zs. 1999. PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J. 18: 4023–4034.Google Scholar
  11. Dayanandan, P., Hebard, F.V. and Kaufmann, P.B. 1976. Cell elongation in the grass pulvinus in response to geotropic stimulation and auxin application. Planta 131: 245–252.Google Scholar
  12. Dellaporta, S.L., Wood, J. and Hicks, J.B. 1983. A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1: 19–21.Google Scholar
  13. Egea-Cortines, M., Saedler, H. and Sommer, H. 1999. Ternary complex formation between SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum. EMBO J. 18: 5370–5379.Google Scholar
  14. Fischer, A., Baum, N., Saedler, H. and Theissen, G. 1995. Chromosomal mapping of the MADS-box multigene family in Zea mays reveals dispersed distribution of allelic genes as well as transposed copies. Nucl. Acids Res. 23: 1901–1911.Google Scholar
  15. Greco, R., Stagi, L., Colombo, L., Angenent, G.C., Sari-Gorla, M. and Pé, M.E. 1997. MADS-box genes expressed in developing inflorescences of rice and sorghum. Mol. Gen. Genet. 253: 615–623.Google Scholar
  16. Heun, M., Kennedy, E., Anderson, J.A., Lapitan, N.L.V. and Sorrels, M.E. 1991. Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome 34: 437–447.Google Scholar
  17. Huijser, P., Klein, J., Lönnig, W.E., Meijer, H., Saedler, H. and Sommer, H. 1992. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene SQUAMOSA in Antirrhinum majus. EMBO J. 11: 1239–1249.Google Scholar
  18. Kang, H.G., Jeon, J.S., Lee, S. and An, G. 1998. Identification of class B and class C floral organ identity genes from rice plants. Plant Mol. Biol. 38: 1021–1029.Google Scholar
  19. Kirby, E.J.M. and Appleyard, M. 1984. Cereal Development Guide, Arable Unit, National Agricultural Centre, Warwickshire, UK.Google Scholar
  20. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daley, M.J. and Newburg, L. 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.Google Scholar
  21. Lu, Z.X., Wu, M., Loh, C.S., Yeong, C.Y. and Goh, C.J. 1993. Nucleotide sequence of a flower-specific MADS-box cDNA clone from orchid. Plant Mol. Biol. 23: 901–904.Google Scholar
  22. Ma, H., Yanofsky, M.F. and Meyerowitz, E.M. 1991. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5: 484–495.Google Scholar
  23. Mandel, M.A., Gustafson-Brown, C., Savidge, B. and Yanofsky, M.F. 1992. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273–277.Google Scholar
  24. Marocco, A., Wissenbach, M., Becker, D., Paz-Ares, J., Saedler, H., Salamini, F. and Rohde, W. 1989. Multiple genes are transcribed in Hordeum vulgare and Zea mays that carry the DNA-binding domain of the myb oncoproteins. Mol. Gen. Genet. 216: 183–187.Google Scholar
  25. Mena, M., Mandel, M.A., Lerner, D.R., Yanofsky, M.F. and Schmidt, R.J. 1995. A characterization of the MADS-box gene family in maize. Plant J. 8: 845–854.Google Scholar
  26. Moh, C.C. and Nilan, R.A. 1953. Multi-ovary in barley. J. Hered. 44: 183–184.Google Scholar
  27. Montag, K., Salamini, F. and Thompson, R.D. 1995. ZEMa, a member of a novel group of MADS-box genes, is alternatively spliced in maize endosperm. Nucl. Acids Res. 23: 2168–2177.Google Scholar
  28. Münster, T., Pahnke, J., Di Rosa, A., Kim, J.T., Martin, W. and Saedler, H. 1997. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc. Natl. Acad. Sci. USA 94: 2415–2420.Google Scholar
  29. Murai, K., Murai, R., Takumi, S. and Ogihara, Y. 1998. Cloning and characterization of cDNAs corresponding to the wheat MADSbox genes. In: A.E. Slinkard (Ed.), Proceedings 9th International Wheat Genetics Symposium, University Extension Press, Saskatchewan, Canada, pp. 89–94.Google Scholar
  30. Norman, C., Runswick, M., Pollock, R. and Treisman, R. 1988. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55: 989–1003.Google Scholar
  31. Passmore, S., Maine, G.T., Elble, R., Christ, C. and Tye, B.K. 1988. Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MATa cells. J. Mol. Biol. 204: 593–606.Google Scholar
  32. Perbal, M.C., Haughn, G., Saedler, H. and Schwarz-Sommer, Zs. 1996. Non-cell-autonomous function of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking. Development 122: 3433–3441.Google Scholar
  33. Pnueli, L., Hareven, D., Broday, L., Hurwitz, C. and Lifschitz, E. 1994. The TM5 MADS-box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6: 175–186.Google Scholar
  34. Purugganan, M.D., Rounsly, S.D., Schmidt, R.J. and Yanofsky, M.F. 1995. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140: 345–356.Google Scholar
  35. Rounsley, S.D., Ditta, G.S. and Yanofsky, M.F. 1995. Diverse roles for MADS-box genes in Arabidopsis development. Plant Cell 7: 1259–1269.Google Scholar
  36. Sablowski, R.W.M. and Meyerowitz, E.M. 1998. Temperaturesensitive splicing in the floral homeotic mutant apetala 3-1. Plant Cell 10: 1453–1563.Google Scholar
  37. Savidge, B., Rounsley, S.D. and Yanofsky, M.F. 1995. Temporal relationship between the transcription of two Arabidopsis MADS-box genes and the floral organ identity genes. Plant Cell 7: 721–733.Google Scholar
  38. Schmidt, R.J., Veit, B., Mandel, M.A., Mena, M., Hake, S. and Yanofsky, M.F. 1993. Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Plant Cell 5: 729–737.Google Scholar
  39. Schwarz-Sommer, Zs., Huijser, P., Nacken, W., Saedler, H. and Sommer, H. 1990. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931–936.Google Scholar
  40. Shore, P. and Sharocks, A.D. 1995. The MADS-box family of transcription factors. Eur. J. Biochem. 229: 1–13.Google Scholar
  41. Sommer, H., Beltran, J.P., Huijser, P., Pape, H., Lönnig, W.E., Saedler, H. and Schwarz-Sommer, Zs. 1990. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9: 605–613.Google Scholar
  42. Soule, J., Skodova, I., Kudrna, D., Kilian, A. and Kleinhofs, A. 1996. Molecular and genetic characterization of barley flower development mutants. Barley Genet. Newsl. 25: 76–81.Google Scholar
  43. Tazhin, O.T. 1980. The linkage of the genes mo5 and n in barley. Barley Genet. Newsl. 10: 69–72.Google Scholar
  44. Theissen, G. and Saedler, H. 1995. MADS-box genes in plant ontogeny and phylogeny: Haeckel's 'biogenetic law' revisited. Curr. Opin. Genet. Dev. 5: 628–639.Google Scholar
  45. Theissen, G., Strater, T., Fischer, A. and Saedler, H. 1995. Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-like MADS-box genes from maize. Gene 156: 155–166.Google Scholar
  46. Theissen, G., Kim, J.T. and Saedler, H. 1996. Classification and phylogeny of the MADS-box multigene family suggest de-fined roles of MADS-box gene subfamilies in the morphological evolution of eucaryotes. J. Mol. Evol. 43: 484–516.Google Scholar
  47. Tyner, A.L., Eichmann, M.J. and Fuchs, E. 1985. The sequence of a type II keratin gene expressed in human skin: conservation of structure among all intermediate filament genes. Proc. Natl. Acad. Sci. USA, 82: 4683-4687.Google Scholar
  48. Weigel, D. and Meyerowitz, E.M. 1994. The ABCs of floral homeotic genes. Cell 78: 203–209.Google Scholar
  49. Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A. and Meyerowitz, E.M. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35–39Google Scholar
  50. Zachgo, S., Saedler, H. and Schwarz-Sommer, Zs. 1997. Pollenspecific expression of DEFH125, a MADS-box transcription factor in Antirrhinum with unusual features. Plant J. 11: 1043–1050.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Jürgen Schmitz
    • 1
  • Rainer Franzen
    • 1
  • Thi Ha Ngyuen
    • 1
  • Federico Garcia-Maroto
    • 2
  • Carlo Pozzi
    • 1
  • Francesco Salamini
    • 1
  • Wolfgang Rohde
    • 1
  1. 1.MPI für ZüchtungsforschungKölnGermany
  2. 2.Departamento de BioquimicaUniversidad de Almeria, La Canada de San UrbanoAlmeriaSpain

Personalised recommendations