Biogeochemistry

, Volume 52, Issue 3, pp 225–257 | Cite as

Soil-air exchange of nitric oxide: An overview of processes, environmental factors, and modeling studies

  • Jörg Ludwig
  • Franz X. Meixner
  • Bernhard Vogel
  • Jochen Förstner
Article

Abstract

Terrestrial ecosystems with their main elements soil and plants may act, in principle, as both source and sink for atmospheric nitric oxide (NO). The net exchange between ecosystems and the atmosphere, however, is globally dominated by biogenic emissions of NO from soils. Consequently the soil–air exchange of NO is the focus of the following overview. Particular emphasis is placed on the major processes that are responsible for NO production in soils (nitrification, denitrification) and their regulation by environmental factors (nitrogen availability, soil water content, soil temperature, ambient NO concentration). It is shown that interactions of these factors are a major reason for the broad range that exists in published data on NO fluxes. This variability makes it difficult to predict the magnitude of NO fluxes on relevant spatial and temporal scales. To overcome the problem various generalization procedures for scaling up in space and time have been developed, and the potential and limitations of the different approaches is discussed.

biogenic NO emission influencing factors land-use modeling upscaling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson IC & Levine JS (1987) Simultaneous field measurements of biogenic emissions of nitric oxide and nitrous oxide. J. Geophys. Res. 92: 965-976Google Scholar
  2. Anderson IC, Levine JS, Poth MA & Riggan PJ (1988) Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning. J. Geophys. Res. 93: 3893-3898Google Scholar
  3. Andreae MO, Crutzen PJ, Culf AD, Grace J, Kabat K, Lelieveld J, Valentini R & Meixner FX (2000) European studies on trace gases and atmospheric chemistry as a contribution to the large-scale biosphere atmosphere experiment in Amazonia (EUSTACH-LBA), European studies on trace gases and atmospheric chemistry as a contribution to the largescale biosphere atmosphere experiment in Amazonia (EUSTACH-LBA), Proceedings of the European Climate Science Conference, October 19-23, 1998, Vienna City Hall, Vienna (Austria), Commission of the European Communities (DG XII), Brussels, BelgiumGoogle Scholar
  4. Cardenas L, Rondon A, Johansson C & Sanhueza E (1993): Effects of soil moisture, temperature, and inorganic nitrogen on nitric oxide emissions from acidic tropical savannah soils. J. Geophys. Res. 98: 14783-14790Google Scholar
  5. Chameides WL, Fehsenfeld F, Rodgers MO, Cardelina C, Martinez J, Parrish D, Lonneman W, Lawson DR, Rasmussen RA, Zimmerman P, Greenberg J, Middleton P & Wang T (1992) Ozone precursor relationships in the ambient atmosphere. J. Geophys. Res. 97: 6037-6055Google Scholar
  6. Colbourn P, Ryden JC & Dollard GJ (1987) Emission of NOx from urine-treated pasture. Environmental Pollution 46: 253-261Google Scholar
  7. Conrad R (1990) Flux of NOx between soil and atmosphere: Importance of soil microbial metabolism. In: Revsbech NP & Sorensen J (Eds) Denitrification in soil and sediment (pp 105-128). Plenum Press, New YorkGoogle Scholar
  8. Conrad R (1994) Compensation concentration as critical variable for regulating the flux of trace gases between soil and atmosphere. B iogeochemistry 27: 155-170Google Scholar
  9. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO,CH4, OCS, N2O, and NO), Microbiological Reviews 60(4): 609-640Google Scholar
  10. Crutzen PJ (1979) The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Ann. Rev. Earth Planet. Sci. 7: 443-472Google Scholar
  11. Davidson EA (1991) Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Rogers JE & Whitman WB (Eds) Microbial production and consumption of greenhouse gases: Methane, nitrogen oxides, and halomethanes (pp 219-235). American Society for Microbiology, Washington, DCGoogle Scholar
  12. Davidson EA (1993) Soil water content and the ratio of nitrous oxide to nitric oxide emitted from soil. In: Oremland RS (Ed) Biogeochemistry of global change: Radiatively active trace gases (pp 369-386). Chapman & Hall, London.Google Scholar
  13. Davidson EA, Stark JM & Firestone MK (1990) Microbial consumption and consumption of nitrate in an annual grassland. Ecology 71: 1968-1975Google Scholar
  14. Davidson EA, Vitousek PM, Matson PA, Riley R, Garcia-Mendez G & Maass JM (1991) Soil emissions of nitric oxide in a seasonally dry tropical forest of Mexico. J. Geophys. Res. 96: 15439-15445Google Scholar
  15. Davidson EA, Matson PA, Vitousek PM, Riley R, Dunkin K, Garcia-Mendez G & Maass JM (1993) Processes regulating soil emissions of NO and N2O in a seasonally dry tropical forest. Ecology 74: 130-139Google Scholar
  16. Davidson EA & Kingerlee W (1997) A global inventory of nitric oxide emissions from soils. Nutrient Cycling in Agroecosystems 48: 37-50Google Scholar
  17. Dean JV & Harper JE (1986) Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay. Plant Physiol. 82: 718-723Google Scholar
  18. Delany AC, Fitzjarrald DR, Lenschow DH, Pearson Jr. R, Wendel GJ & Woodruff B (1986) Direct measurements of nitrogen oxides and ozone fluxes over grassland. J. Atmos. Chem. 4: 429-444Google Scholar
  19. Firestone MK & Davidson EA (1989) Microbiological basis of NO and N2O production and consumption in soil. In: Andreae MO & Schimel DS (Eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere (pp 7-21). John Wiley & Sons, New YorkGoogle Scholar
  20. Firestone MK, Firestone RB & Tiedje JM (1979) Nitric oxide as an intermediate in denitrification: Evidence from Nitrogen-13 isotope exchange. Biochem. Biophys. Res. Commun. 91: 10-16Google Scholar
  21. Focht DD & Verstraete W (1977) Biochemical ecology of nitrification and denitrification. Adv. Microbiol. Ecol. 1: 135-214Google Scholar
  22. Folorunso OA & Rolston DE (1984) Spatial variability of field-measured denitrification gas fluxes. Soil Sci. Soc. Am. J. 48: 1214-1219Google Scholar
  23. Förstner J (1996) Berechnung der biogenen NO-Emissionen für das Gebiet von Baden-Württemberg.-Seminararbeit, Institut für Meteorologie und Klimaforschung, Universität Karlsruhe/Forschungszentrum KarlsruheGoogle Scholar
  24. Fowler D & Duyzer JH (1989) Micrometeorological techniques for the measurement of trace gas exchange. In: Andreae MO & Schimel DS (Eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere (pp 189-207). John Wiley & Sons, New YorkGoogle Scholar
  25. Galbally IE (1989) Factors controlling NOx emissions from soils. In: Andreae MO & Schimel DS (Eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere (pp 23-37). John Wiley & Sons, New YorkGoogle Scholar
  26. Galbally IE & Johansson C (1989) A model relating laboratory measurements of rates of nitric oxide production and field measurements of nitric oxide emission from soils. J. Geophys. Res. 94: 6473-6480Google Scholar
  27. Galbally IE & Roy CR (1978) Loss of fixed nitrogen from soils by nitric oxide exhalation. Nature 275: 734-735Google Scholar
  28. Ganzeveld LN & Lelieveld J (1995) Dry deposition parameterization in a chemistry-general circulation model and its influence on the distribution of chemically reactive trace gases. J. Geophys. Res. 100: 20999-21012Google Scholar
  29. Hall SJ, Matson PA & Roth R (1996) NOx emission from soil: Implications for air quality modelling in agricultural regions. Ann. Rev. Energy Environ. 21: 311-346Google Scholar
  30. Hanson PJ & Lindberg SE (1991) Dry deposition of reactive nitrogen compounds: A review of leaf, canopy and non-foliar measurements. Atmospheric Environment 25A: 1615-1634Google Scholar
  31. Harris GW, Wienhold FG & Zenker T (1996) Airborne observation of strong biogenic NOx emissions from the Namibian savanna at the end of the dry season. J. Geophys. Res. 101: 23707-23711Google Scholar
  32. Hill AC (1971) Vegetation: A sink for atmospheric pollutants. J. Air Pollut. Control Ass. 21: 341-346Google Scholar
  33. Hooper AB & Terry KR (1979) Hydroxylamine oxidoreductase of Nitrosomonas: Production of nitric oxide from hydroxylamine. Biochim. Biophys. Acta 571: 12-20PubMedGoogle Scholar
  34. Hutchinson GL & Brams EA (1992) NO versus N2O emissions from an NHC4-amended Bermuda grass pasture. J. Geophys. Res. 97: 9889-9896Google Scholar
  35. Hutchinson GL, Livingston GP & Brams EA (1993) Nitric and nitrous oxide evolution from managed subtropical grassland. In: Oremland RS (Ed) The biogeochemistry of global change: Radiatively active trace gases (pp 290-316). Chapman and Hall, New YorkGoogle Scholar
  36. Hutchinson GL, Vigil MF, Doran JW & Kessavalou A (1997) Coarse-scale soil atmosphere NOx exchange modeling: status and limitations. Nutrient Cycling in Agroecosystems 48: 25-35Google Scholar
  37. Jacob DJ & Bakwin PS (1991) Cycling of NOx in tropical forest canopies. In: Rogers JE & Whitman WB (Eds) Microbial production and consumption of greenhouse gases: Methane, nitrogen oxide, and halomethanes (pp 237-253). American Society for Microbiology, Washington, DCGoogle Scholar
  38. Jambert C, Serça D & Delmas R (1997) Quantification of N-losses as NH3, NO and N2O and N2 from fertilised maize fields in southwestern France. Nutrient Cycling in Agroecosystems 48: 91-104Google Scholar
  39. Johansson C (1984) Field measurements of emission of nitric oxide from fertilized and unfertilized forest soils in Sweden. J. Atmos. Chem. 1: 429-442Google Scholar
  40. Johansson C (1989) Fluxes of NOx above soil and vegetation. In: Andreae MO & Schimel DS (Eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere (pp 229-246). John Wiley & Sons, New YorkGoogle Scholar
  41. Johansson C & Galbally IE (1984) Production of nitric oxide in loam under aerobic and anaerobic conditions. Appl. Environ. Microbiol. 47: 1284-1289Google Scholar
  42. Johansson C & Granat L (1984) Emission of nitric oxide from arable land. Tellus 36B: 25-37Google Scholar
  43. Johansson C, Rohde H & Sanhueza E (1988) Emission of NO in a tropical savanna and a cloud forest during the dry season. J. Geophys. Res. 93: 7180-7192Google Scholar
  44. Johansson C & Sanhueza E (1988) Emission of NO from savanna soils during rainy season. J. Geophys. Res. 93: 14193-14198Google Scholar
  45. Kasibhatla PS, Levy II H & Moxim WJ (1993) Global NOx, HNO3, PAN, and NOy distributions from fossil fuel combustion emissions: A model study. J. Geophys. Res. 98: 7165-7180Google Scholar
  46. Kim DS, Aneja VP & Robarge WP (1994) Characterization of nitrogen oxide fluxes from soil of a fallow field in the central Piedmont of North Carolina. Atmospheric Environment 28: 1129-1137Google Scholar
  47. Kimball BA & Lemon ER (1971) Air turbulence effects upon soil gas exchange. Soil Sci. Soc. Am. Proc. 35: 16-21Google Scholar
  48. Klepper L (1979) Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicidetreated soybean plants. Atmospheric Environment 13: 537-542Google Scholar
  49. Kramm G, Meixner FX, Dlugi R, Schröder P & Paw U KP (2001) Atmosphere-biosphere exchange of trace constituents-Measuring and modeling techniques, Lecture Notes in Earth Sciences, Springer Verlag, Heidelberg Berlin New York, to be submittedGoogle Scholar
  50. Levine JS, Cofer III WR, Sebacher DI, Winstead EL, Sebacher S & Boston PJ (1988) The effects of fire on biogenic soil emissions of nitric oxide and nitrous oxide. Global Biogeochemical Cycles 2: 445-449Google Scholar
  51. Li C, Frolking S & Frolking DA (1992) A model of nitrous oxide evolution from soil driven by rainfall events: I. model structure and sensitivity, J. Geophys. Res. 97: 9759-9776Google Scholar
  52. Linn DM & Doran JW (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J. 48: 1267-1272Google Scholar
  53. Liu SC, Trainer M, Fehsenfeld FC, Parish DD, Williams EJ, Fahey DW, Hübler G & Murphy PC (1987) Ozone production in the rural troposphere and the implications for regional and global ozone distributions. J. Geophys. Res. 92: 4191-4207Google Scholar
  54. Logan JA (1983) Nitrogen oxides in the troposphere: Global and regional budgets. J. Geophys. Res. 88: 10785-10807Google Scholar
  55. Logan JA, Prather MJ, Wofsy SC & McElroy MB (1981) Tropospheric chemistry: A global perspective. J. Geophys. Res. 86: 7210-7254Google Scholar
  56. Ludwig J (1994) Untersuchungen zum Austausch von Stickoxiden zwischen Biosphäre und Atmosphäre. PhD Thesis, Universität Bayreuth, BayreuthGoogle Scholar
  57. Ludwig J & Meixner FX (1994) Surface exchange of nitric oxide (NO) over three European ecosystems. In: Angeletti G & Restelli G (Eds) Proceedings of the Sixth European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants (pp 587-593). Commission of the European Communities, LuxembourgGoogle Scholar
  58. Ludwig J, Weber P, Meixner FX & Rennenberg H (1992) Surface fluxes of NO and NO2 by a dynamic chamber technique-Laboratory studies on wheat. In: Angeletti G, Beilke S & Slanina J (Eds) Field measurements and interpretation of species related to photooxidants and acid deposition (pp 257-265). Commission of the European Communities, Brussels, BelgiumGoogle Scholar
  59. Matson P (1997) NOx emission from soils and its consequences for the atmosphere and biosphere: critical gaps and research directions for the future. Nutrient Cycling in Agroecosystems 48: 1-6Google Scholar
  60. Matthews E (1994) Nitrogenous fertilizers: Global distribution of consumption and associated emissions of nitrous oxide and ammonia. Global Biogeochemical Cycles 8: 411-439Google Scholar
  61. McKenny DJ & Drury CF (1997) Nitric oxide production in agricultural soils. Global Change Biology, 3: 317-326Google Scholar
  62. Meixner FX (1994) Surface exchange of odd nitrogen oxides. Nova Acta Leopoldina NF 70: 299-348Google Scholar
  63. Meixner FX (1997) The surface exchange of nitric oxide. In: San Jose R & Brebbia CA (Eds) Measurements and modeling in environmental pollution (pp 325-334). Computational Mechanics Publications, Southampton, UKGoogle Scholar
  64. Meixner FX, Fickinger T, Marufu L, Serça D, Nathaus FJ, Makina E, Mukurumbira L & Andreae MO (1997) Preliminary results on nitric oxide emission from a southern African savanna ecosystem. Nutrient Cycling in Agroecosystems 48: 123-138Google Scholar
  65. Mosier AR (1989) Chamber and isotope techniques. In: Andreae MO & Schimel DS (Eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere (pp 175-187). John Wiley & Sons, New YorkGoogle Scholar
  66. Obermeier A, Berner P, Friedrich R, John C & Seier J (1997) Emissionsminderungsmaßnahmen für Ozonvorläufersubstanzen in Baden-Württemberg und im südlichen Oberrheingraben. In: Horsch F, Bittlingmeier L, Filby WG, Fund N & Gross S (Eds) 13. Statuskolloquium des PEF am 11. Und 12. März 1997 im Forschungszentrum Karlsruhe, ISBN: 0-948-535-X, Forschungszentrum Karlsruhe GmbH, pp 195-206Google Scholar
  67. Otter LB, Yang WX, Scholes MC & Meixner FX (1999) Nitric oxide emissions from a Southern African savanna, J. Geophys. Res. 104(D15): 18,471-18,485Google Scholar
  68. Parton WJ, Mosier AR, Ojima DS, Valentine DW, Schimel DS, Weier K & Kulmala AE (1996) Generalized model for N2 and N2O production from nitrification and denitrification, Global Biogeochemical Cycles 10: 401-412Google Scholar
  69. Payne WJ (1981) The status of nitric oxide and nitrous oxide as intermediates in denitrification. In: Delwiche CC (Ed) Denitrification, nitrification, and atmospheric nitrous oxide (pp 85-103). Wiley-Interscience, New YorkGoogle Scholar
  70. Poth M & Focht DD (1985) 15N kinetic analysis of N2O production by Nitrosomonas europaea: An examination of nitrifier denitrification. Appl. Environ. Microbiol. 49: 1134-1141Google Scholar
  71. Potter CS, Matson PA, Vitousek PM & Davidson EA (1996) Process modeling of controls on nitrogen trace gas emissions from soils worldwide. J. Geophys. Res. 101: 1361-1377Google Scholar
  72. Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA & Klooster SA (1993) Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles 7: 811-841Google Scholar
  73. Remde A & Conrad R (1990) Production of nitric oxide in Nitrosomonas europaea by reduction of nitrite. Arch. Microbiol. 154: 187-191Google Scholar
  74. Remde A & Conrad R (1991a) Metabolism of nitric oxide in soil and denitrifying bacteria. FEMS Microbiol. Ecol. 85: 81-93Google Scholar
  75. Remde A & Conrad R (1991b) Role of nitrification and denitrification for NO metabolism in soil. Biogeochemistry. 12: 189-205Google Scholar
  76. Remde A, Ludwig J, Meixner FX & Conrad R (1993) A study to explain the emission of nitric oxide from a soil marsh. J. Atmos. Chem. 17: 249-275Google Scholar
  77. Remde A, Slemr F & Conrad R (1989) Microbial production and uptake of nitric oxide in soil. FEMS Microbiology Ecology 62: 221-230Google Scholar
  78. Robertson GP (1989) Nitrification and denitrification in humid tropical ecosystems: Potential controls on nitrogen retention. In: Procter J (Ed) Mineral nutrients in tropical forest and savanna ecosystems (pp 55-69). Blackwell Scientific, Boston, MassGoogle Scholar
  79. Rudolph J, Rothfuss F & Conrad R (1996) Flux between soil and atmosphere, vertical concentration profiles in soil, and turnover of nitric oxide: 1. Measurements on a model soil core. J. Atmos. Chem. 23: 253-273Google Scholar
  80. Rudolph J & Conrad R (1996) Flux between soil and atmosphere, vertical concentration profiles in soil, and turnover of nitric oxide: 2. Experiments with naturally layered soil cores. J. Atmos. Chem. 23: 275-300Google Scholar
  81. Sanhueza E, Hao WM, Scharffe D, Donoso L & Crutzen PJ (1990) N2O and NO emissions from soils of the northern part of the Guayana shield, Venezuela. J. Geophys. Res. 95: 22481-22488Google Scholar
  82. Schimel J (1995) Ecosystem consequences of microbial diversity and community structure. Ecol. Stud. (Berlin) 113: 239-254Google Scholar
  83. Shepherd MF, Barzetti S & Hastie DR (1991) The production of atmospheric NOx and N2O from a fertilized agricultural soil. Atmospheric Environment 25A: 1961-1969Google Scholar
  84. Skiba U, Fowler D & Smith KA (1994) Emissions of NO and N2O from soils. Environ. Monitor. Assess. 31: 153-158Google Scholar
  85. Skiba U, Fowler D & Smith KA (1997) Nitric oxide emissions from agricultural soils in temperate and tropical climates: Sources, control and mitigation options. Nutrient Cycling in Agroecosystems 48: 139-153Google Scholar
  86. Skiba U, Smith KA & Fowler D (1993) Nitrification and denitrification as sources of nitric oxide and nitrous oxide in a sandy loam soil. Soil Biol. Biochem. 25: 1527-1536CrossRefGoogle Scholar
  87. Skopp J, Jawson MD & Doran JW (1990) Steady-state aerobic microbial activity as a function of soil water content. Soil Sci. Soc. Am. J. 54: 1619-1625Google Scholar
  88. Slemr F & Seiler W (1984) Field measurement of NO and NOj2 emissions from fertilized and unfertilized soils. J. Atmos. Chem. 2: 1-24Google Scholar
  89. Slemr F & Seiler W (1991) Field study of environmental variables controlling the NO emission from soil and the NO compensation point. J. Geophys. Res. 96: 13017-13031Google Scholar
  90. Stedman DH & Shetter RE (1982) The global budget of atmospheric nitrogen species. In: Schwartz SE (Ed) Trace atmospheric constituents (pp 411-454). John Wiley & Sons, New YorkGoogle Scholar
  91. Thornton FC, Shurpall NJ, Bock BR & Reddy KC (1998) N2O and NO emission from poultry litter and urea applications to Bermuda grass. Atmos. Environ. 32: 1623-1630Google Scholar
  92. Valente RJ & Thornton FC (1993) Emissions of NO from soil at a rural site in Central Tennessee. J. Geophys. Res. 98: 16745-16753Google Scholar
  93. Veldkamp E & Keller M (1997) Fertilizer induced nitric oxide emissions from agricultural soils. Nutrient Cycling in Agroecosystems 48: 69-77Google Scholar
  94. Vermoesen A, de Groot C-J, Nollet L, Boeckx P & Cleemput O (1996) Effect of ammonium and nitrate application on the NO and N2O emission out of different soils. Plant and Soil 181: 153-162Google Scholar
  95. Vogel B, Fiedler F & Vogel H (1995) The influence of topography and biogenic VOC emissions in the state of Baden-Württemberg on the ozone concentrations during episodes of high air temperature. J. Geophys. Res. 100 (D11): 22907-2298Google Scholar
  96. Vos GJM, Bergevoet IMJ, Vedy JC & Neyroud JA (1994) The fate of spring applied fertilizer N during the autumn-winter period: Comparison between winter-fallow and green manure cropped soil. Plant & Soil 160: 201-214Google Scholar
  97. Warneck P (1988) Chemistry of the natural atmosphere, Academic Press, San Diego, Calif. Wildt J, Kley D, Rockel A, Rockel P & Segschneider HJ (1996) Emission of NO from several higher plant species. J. Geophys. Res. 102: 5919-5927Google Scholar
  98. Williams EJ & Fehsenfeld FC (1991) Measurement of soil nitrogen oxide emissions at three North American ecosystems. J. Geophys. Res. 96: 1033-1042Google Scholar
  99. Williams EJ, Guenther A & Fehsenfeld FC (1992a) An inventory of nitric oxide emissions from soils in the United States. J. Geophys. Res. 97: 7511-7519Google Scholar
  100. Williams EJ, Hutchinson GL & Fehsenfeld FC (1992b) NOx and N2O emissions from soil. Global Biogeochemical Cycles 6: 351-388Google Scholar
  101. Williams EJ, Parrish DD, Buhr MP, Fehsenfeld FC & Fall R (1988) Measurement of soil NOx emissions in central Pennsylvania. J. Geophys. Res. 93: 9539-9546Google Scholar
  102. Williams EJ, Parrish DD & Fehsenfeld FC (1987) Determination of nitrogen oxide emissions from soils: Results from a grassland site in Colorado, United States. J. Geophys. Res. 92: 2173-2179Google Scholar
  103. Yamulki S, Goulding KWT, Webster CP & Harrison RM (1995) Studies of NO and N2O fluxes from a wheat field. Atmos. Environ. 29: 1627-1635Google Scholar
  104. Yang WX & Meixner FX (1997) Laboratory studies on the release of nitric oxide from subtropical grassland soils: The effect of soil temperature and moisture. In: Jarvis SC & Pain BF (Eds) Gaseous Nitrogen Emissions from Grasslands (pp 67-71). CAB International, Wallingford, UKGoogle Scholar
  105. Yang WX, Otter LB, Li XH, Welling M, van Djik S & Meixner FX (1999) Methodology for the simulataneous measurement of NOx and N2O from soils. Soil. Sc. Soc. Am. J. submittedGoogle Scholar
  106. Yienger JJ & Levy II H (1995) Empirical model of global soil-biogenic NOx emissions. J. Geophys. Res. 100: 11447-11464Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Jörg Ludwig
    • 1
  • Franz X. Meixner
    • 2
  • Bernhard Vogel
    • 3
  • Jochen Förstner
    • 3
  1. 1.Abteilung BiogeochemieMax Planck Institut für ChemieMainzGermany
  2. 2.Abteilung BiogeochemieMax Planck Institut für ChemieMainzGermany (author for correspondence, fax:
  3. 3.Institut für Meteorologie und KlimaforschungForschungszentrum Karlsruhe/Univ. KarlsruheKarlsruheGermany

Personalised recommendations