, Volume 17, Issue 1, pp 75–92 | Cite as

Some Ideal Lattices in Partial Abelian Monoids and Effect Algebras

  • G. Chevalier
  • S. Pulmannová


Congruences and ideals in partial Abelian monoids (PAM) are studied. It is shown that the so-called R1-ideals in cancellative PAMs (CPAM) form a complete Brouwerian sublattice of the lattice of all ideals, and they are standard elements of it. In a special class of CPAMs, effect algebras, properties of ideals and congruences are studied in relation to the generalized Sasaki projections and dimensional equivalence.

congruence dimension equivalence effect algebra ideal lattice of ideals partial Abelian monoid R1-ideal Riesz ideal Sasaki projection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burmeister, P. (1986) A Model Theoretic Oriented Approach to Partial Algebras, Academic Verlag, Berlin.Google Scholar
  2. 2.
    Bennett, M. K. and Foulis, D. (1998) A generalized Sasaki projection for effect algebras, Tatra Mt. Math. Publ. 15, 55-66.Google Scholar
  3. 3.
    Birkhoff, G. (1967) Lattice Theory, third edn, Amer. Math. Soc. Colloq. Publ. XXV.Google Scholar
  4. 4.
    Chang, C. C. (1959) Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88, 467-490.Google Scholar
  5. 5.
    Chevalier, G. (1998) Congruence relations in orthomodular lattices, Tatra Mt. Math. Publ. 15, 197-225.Google Scholar
  6. 6.
    Chovanec, F. and Kôpka, F. (1997) Boolean D-posets, Tatra Mt. Math. Publ. 10, 183-197.Google Scholar
  7. 7.
    Foulis, D. and Bennett, M. K. (1994) Effect algebras and unsharp quantum logics, Found. Phys. 24, 1331-1352.Google Scholar
  8. 8.
    Foulis, D., Greechie, R. and Rüttimann, G. (1992) Filters and supports in orthoalgebras, Internat. J. Theoret. Phys. 31, 789-807.Google Scholar
  9. 9.
    Giuntini, R. and Greuling, H. (1989) Toward a formal language for unsharp properties, Found. Phys. 19, 931-945.Google Scholar
  10. 10.
    Greechie, R., Foulis, D. and Pulmannová, S. (1995) The center of an effect algebra, Order 12, 91-106.Google Scholar
  11. 11.
    Gudder, S. and Pulmannová, S. (1997) Quotients of partial Abelian monoids, Algebra Universalis 38, 395-421.Google Scholar
  12. 12.
    Kalmbach, G. (1983) Orthomodular Lattices, Academic Press, London.Google Scholar
  13. 13.
    Kôpka, F. and Chovanec, F. (1994) D-posets, Math. Slovaca 44, 21-34.Google Scholar
  14. 14.
    Loomis, L. H. (1955) The lattice theoretical background of the dimension theory of operator algebras, Mem. Amer. Math. Soc. 18.Google Scholar
  15. 15.
    Navara, M. and Pták, P. (1979) Difference posets and orthoalgebras, Busefal 69, 64-69.Google Scholar
  16. 16.
    Pták, P. and Pulmannová, S. (1991) Orthomodular Structures as Quantum Logics, Kluwer Academic Publishers, Dordrecht.Google Scholar
  17. 17.
    Pulmannová, S. (1997) Congruences in partial Abelian semigroups, Algebra Universalis 37, 119-140.Google Scholar
  18. 18.
    Schmidt, K. D. (1989) Jordan Decompositions of Generalized Vector Measures, Wiley, New York.Google Scholar
  19. 19.
    Wilce, A. (1998) Perspectivity and congruences in partial Abelian semigroups, Math. Slovaca 48(2), 117-135.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • G. Chevalier
    • 1
  • S. Pulmannová
    • 2
  1. 1.Institut Girard Desargues (UPRES A 5028)Université Lyon 1Villeurbanne CedexFrance
  2. 2.Mathematical DepartmentSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations