Advertisement

Journal of Neuro-Oncology

, Volume 48, Issue 1, pp 27–40 | Cite as

Tolerance of the Normal Canine Brain to Epithermal Neutron Irradiation in the Presence of p-boronophenylalanine

  • Jeffrey A. Coderre
  • Patrick R. Gavin
  • Jacek Capala
  • Ruimei Ma
  • Gerard M. Morris
  • Terry M. Button
  • Tariq Aziz
  • Nancy S. Peress
Article

Abstract

Twelve normal dogs underwent brain irradiation in a mixed-radiation, mainly epithermal neutron field at the Brookhaven Medical Research Reactor following intravenous infusion of 950 mg of 10B-enriched BPA/kg as its fructose complex. The 5 × 10 cm irradiation aperture was centered over the left hemisphere. For a subgroup of dogs reported previously, we now present more detailed analyses including dose–volume relationships, longer follow-ups, MRIs, and histopathological observations. Peak doses (delivered to 1 cm3 of brain at the depth of maximum thermal neutron flux) ranged from 7.6 Gy (photon-equivalent dose: 11.8 Gy-Eq) to 11.6 Gy (17.5 Gy-Eq). The average dose to the brain ranged from 3.0 Gy (4.5 Gy-Eq) to 8.1 Gy (11.9 Gy-Eq) and to the left hemisphere, 6.6 Gy (10.1 Gy-Eq) to 10.0 Gy (15.0 Gy-Eq). Maximum tolerated ‘threshold’ doses were 6.7 Gy (9.8 Gy-Eq) to the whole brain and 8.2 Gy (12.3 Gy-Eq) to one hemisphere. The threshold peak brain dose was 9.5 Gy (14.3 Gy-Eq). At doses below threshold, some dogs developed subclinical MRI changes. Above threshold, all dogs developed dose-dependent MRI changes, neurological deficits, and focal brain necrosis.

boron neutron capture therapy boronophenylalanine BNCT brain epithermal neutrons irradiation normal tissue tolerance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Catterall M, Bloom HJG, Ash DV, Walsh L, Richardson A, Uttley D, Gowing NF, Lewis P, Chaucer B: Fast neutrons compared with megavoltage x-rays in the treatment of patients with supratentorial glioblastoma: A controlled pilot study. Int J Radiat Oncol Biol Phys 6: 261-266, 1980Google Scholar
  2. 2.
    Laramore GE, Griffin TW, Gerdes AJ, Parker RG: Fast neutron and mixed beam (neutron/photon) teletherapy for grades III and IV astrocytomas. Cancer 42: 96-103, 1978Google Scholar
  3. 3.
    Masciopinto JE, Levin AB, Mehta MP, Rhode BS: Stereotactic radiosurgery for glioblastoma: a final report of 31 patients. J Neurosurg 82: 530-535, 1995Google Scholar
  4. 4.
    Slatkin DN: A history of boron neutron capture therapy of brain tumours. Postulation of a brain radiation dose tolerance limit. Brain 114: 1609-1629, 1991Google Scholar
  5. 5.
    Barth RF, Soloway AH, Brugger RM: Boron neutroncapture therapy of brain tumors-Past history, current status, and future potential. Cancer Investigation 14: 534-550, 1996Google Scholar
  6. 6.
    Coderre JA, Elowitz EH, Chadha M, Bergland R, Capala J, Joel DD, Liu HB, Slatkin DN, Chanana AD: Boron neutron capture therapy for glioblastoma multiforme using p-boronophenylalanine and epithermal neutrons: Trial design and early clinical results. J Neuro-Oncol 33: 141-152, 1997Google Scholar
  7. 7.
    Barth RF, Soloway AH, Goodman JH, Gahbauer RA, Gupta N, Blue TE, Yang W, Tarks W: Boron neutron capture therapy of brain tumors: an emerging therapeutic modality. Neurosurgery 44: 433-450; discussion 450-451, 1999Google Scholar
  8. 8.
    Coderre JA, Morris GM: The radiation biology of boron neutron capture therapy. Radiat Res 151: 1-18, 1999Google Scholar
  9. 9.
    Fairchild RG: 'Epithermal' neutron beam isodose charts in a phantom head. Radiology 85: 555-564, 1965Google Scholar
  10. 10.
    Saraf SK, Fairchild RG, Kalef-Ezra JA, Laster BH, Fiarman S, Ramsey E: Epithermal beam development at the BMRR: Dosimetric evaluation. In:OK Harling, JA Bernard, RG Zamenhof (eds) Neutron Beam Design, Development and Performance for Neutron Capture Therapy. Plenum Press, New York, 1990, 307-316Google Scholar
  11. 11.
    Liu HB, Brugger RM, Greenberg DD, Rorer DC, Hu JP, Hauptman HM: Enhancement of the epithermal neutron beam used for boron neutron capture therapy. Int J Radiat Oncol Biol Phys 28: 1149-1156, 1994Google Scholar
  12. 12.
    Morris GM, Coderre JA, Hopewell JW, Micca PL, Nawrocky MM, Liu HB, Bywaters A: Response of the central nervous system to boron neutron capture irradiation: Evaluation using rat spinal cord model. Radiother Oncol 32: 249-255, 1994Google Scholar
  13. 13.
    Gavin PR, Kraft SL, Huiskamp R, Coderre JA: A review: CNS effects and normal tissue tolerance in dogs. J Neuro-Oncol 33: 71-80, 1997Google Scholar
  14. 14.
    Huiskamp R, Gavin PR, Coderre JA, Phillip KHI, Wheeler FJ: Brain tolerance in dogs to boron neutron capture therapy with borocaptate sodium (BSH) or boronophenylalanine (BPA). In:Y Mishima (ed) Cancer Neutron Capture Therapy. Plenum Press, New York, 1996, pp. 591-596Google Scholar
  15. 15.
    Yoshino K, Suzuki A, Mori Y, Kanihana H, Honda C, Mishima Y, Kobayashi T, Kanda K: Improvement of solubility of p-boronophenylalanine by complex formation with monosaccharides. Strahlentherapie und Oncologie 165: 127-129, 1989Google Scholar
  16. 16.
    LaHann TR, Lu DR, Daniell G, Kraft SL, Gavin PR, Bauer WF: Bioavailability of intravenous formulations of p-boronophenylalanine in dog and rat. In: AH Soloway, RF Barth, DE Carpenter (eds) Advances in Neutron Capture Therapy. Plenum Press, New York, 1993, pp. 585-589Google Scholar
  17. 17.
    Fairchild RG, Gabel D, Laster BH, Greenberg D, Kiszenick W, Micca P: Microanalytical techniques for boron analysis using the 10B(n,α)7 Li reaction. Med Phys 13: 50-56, 1986Google Scholar
  18. 18.
    Barth RF, Adams DM, Soloway AH, Mechetner EB, Alam F, Annisuzzaman AKM: Determination of boron in tissues and cells using direct-current plasma atomic emission spectroscopy. Anal Chem 63: 890-893, 1991Google Scholar
  19. 19.
    Bauer WF, Micca PL, White BM: A rapid method for the direct analysis of boron in whole blood by atomic emission spectroscopy. In:AH Soloway, RF Barth, DE Carpenter (eds) Advances in Neutron Capture Therapy. Plenum Press, New York, 1993, 403-407Google Scholar
  20. 20.
    Wessol DE, Wheeler FJ: Methods for creating and using free-form geometries in Monte Carlo particle transport. Nucl Sci Eng 113: 314-323, 1993Google Scholar
  21. 21.
    Nigg DW: Methods for radiation dose distribution analysis and treatment planning in boron neutron capture therapy. Int J Radiat Oncol Biol Phys 28: 1121-1134, 1994Google Scholar
  22. 22.
    Nigg DW, Wheeler FJ, Wessol DE, Capala J, Chadha M: Computational dosimetry and treatment planning for boron neutron capture therapy. J Neuro-Oncol 33: 93-103, 1997Google Scholar
  23. 23.
    Fukuda H, Hiratsuka J, Honda C, Kobayashi T, Yoshino K, Karashima H, Takahashi J, Abe Y, Kanda K, Ichihashi M, Mishima Y: Boron neutron capture therapy of malignant melanoma using 10B-paraboronophenylalanine with special reference to evaluation of radiation dose and damage to the skin. Radiat Res 138: 435-442, 1994Google Scholar
  24. 24.
    Elowitz EH, Bergland RM, Coderre JA, Joel DD, Chadha M, Chanana AD: Biodistribution of p-boronophenylalanine in patients with glioblastoma multiforme for use in boron neutron capture therapy. Neurosurgery 42: 463-469, 1998Google Scholar
  25. 25.
    Yammamoto T, Hirano AA: A comparative study of modified Bielschowsky, Bodian and Thioflavin stains on Alzheimer's neurofibrillary tangles. Neuropathol Appl Neurobiol 12: 3-9, 1986Google Scholar
  26. 26.
    Luna LG: Histopathologic Methods and Color Atlas of Special Stains and Tissue Artifacts. 1992, Downers Grove, Il: Johnson Printers.Google Scholar
  27. 27.
    Gavin PR, Wheeler FJ, Huiskamp R, Siefert A, Kraft S, DeHaan C: Large animal model studies of normal tissue tolerance using an epithermal neutron beam and borocaptate sodium. In: D Gabel, R Moss (eds) Boron Neutron Capture Therapy. Plenum Press, New York, 1992, pp. 197-209Google Scholar
  28. 28.
    Halperin EC, Burger PC, Bullard DE: The fallacy of the localized supratentorial malignant glioma. Int J Radiat Oncol Biol Phys 15: 505-509, 1988Google Scholar
  29. 29.
    Coderre JA, Button TM, Micca PL, Fisher CD, Nawrocky MM, Liu HB: Neutron capture therapy of the 9L rat gliosarcoma using the p-boronophenylalanine-fructose complex. Int J Radiat Oncol Biol Phys 30: 643-652, 1994Google Scholar
  30. 30.
    Coderre JA, Chanana AD, Joel DD, Elowitz EH, Micca PL, Nawrocky MM, Chadha M, Gebbers J-O, Shady M, Peress NS, Slatkin DN: Biodistribution of boronophenylalanine in patients with glioblastoma multiforme: Boron concentration correlates with tumor cellularity. Radiat Res 149: 163-170, 1998Google Scholar
  31. 31.
    Joel DD, Coderre JA, Micca PL, Nawrocky MM: Effect of dose and infusion time on the delivery of p-boronophenylalanine for neutron capture therapy. J Neuro-Oncol 41: 213-221, 1999Google Scholar
  32. 32.
    Chanana AD, Capala J, Chadha M, Coderre JA, Diaz AZ, Elowitz EH, Iwai J, Joel DD, Liu HB, Ma R, Pendzick N, Peress NS, Shady MS, Slatkin DN, Tyson GW, Wielopolski L: Boron neutron capture therapy for glioblastoma multiforme: Interim results from the phase I/II doseescalation studies. Neurosurgery 44: 1182-1192; discussion 1192-1193, 1999Google Scholar
  33. 33.
    Busse P, Kaplan I, Zamenhof R, Harling O, Kaplan J, Chuang C, Goorley J, KigerW, Riley K, Tang L, Solares G, Palmer M: BNCT for glioblastoma multiforme and intracranial metastatic melanoma: Clinical results of the Harvard-Massachusetts Institute of Technology (MIT) Phase I trial. In: MF Hawthorne, RJ Wiersema, K Shelly (eds) Proceedings of the Eighth International Symposium on Neutron Capture Therapy. Plenum, New York (in press)Google Scholar
  34. 34.
    Bergland R, Elowitz E, Coderre JA, Joel D, Chadha M: APhase 1 trial of intravenous boronophenylalanine-fructose complex in patients with glioblastoma multiforme. In: Y Mishima (ed) Cancer Neutron Capture Therapy. Plenum Press, New York, 1996, pp. 739-746Google Scholar
  35. 35.
    Gabel D, Philipp KHI, Wheeler FJ, Huiskamp R: The compound factor of the 10B(n,α)7Li reaction from borocaptate sodium and the relative biological effectiveness of recoil protons for induction of brain damage in boron neutron capture therapy. Radiat Res 149: 378-386, 1998Google Scholar
  36. 36.
    Fike JR, Cann CE, Turowski K, Higgins RJ, Chan ASL, Phillips TL, Davis RL: Radiation dose response of normal brain. Int J Radiat Oncol Biol Phys 14: 63-70, 1988Google Scholar
  37. 37.
    Coderre JA, Makar MS, Micca PL, Nawrocky MM, Liu HB, Joel DD, Slatkin DN, Amols HI: Derivations of relative biological effectiveness for the high-LET radiations produced during boron neutron capture irradiations of the 9L rat gliosarcoma in vitro and in vivo. Int J Radiat Oncol Biol Phys 27: 1121-1129, 1993Google Scholar
  38. 38.
    Douglas BG: Implication of the quadratic cell survival curve and human skin radiation 'tolerance dose' on fractionation and superfractionation dose selection. Int J Radiat Oncol Biol Phys 8: 1135-1142, 1982Google Scholar
  39. 39.
    Cohen L: Radiation response and recovery: Radiobiological principles and their relation to clinical practice. In: EE Schwartz (ed) The Biological Basis of Radiation Therapy. J.B. Lippincott, 1966, 248 pGoogle Scholar
  40. 40.
    Park RD, O'Brien TR, Baker BB, Morgan JP: Single dose X-irradiation of canine skin. Vet Radiol 15: 108-111, 1974Google Scholar
  41. 41.
    Thames HD, Hendry JH: Radiobiological guide for radiotherapists. In: Fractionation in Radiotherapy. Taylor & Francis, Inc., Philadelphia, 1987, 229-230Google Scholar
  42. 42.
    Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M: Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21: 109-122, 1991Google Scholar
  43. 43.
    Engenhart R, Wowra B, Debus J, Kimming BN, Hover K-H, Lorenz W, Wannenmacher M: The role of high-dose, singlefraction irradiation in small and large intracranial ateriovenous malformations. Int J Radiat Oncol Biol Phys 30: 521-529, 1994Google Scholar
  44. 44.
    Thompson CB, Sanders JE, Flournoy N, Buckner CD, Thomas ED: The risk of central nervous system relapse and leukoencephalopathy in patients receiving marrow transplants for acute leukemia. Blood 67: 195-199, 1986Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Jeffrey A. Coderre
    • 1
  • Patrick R. Gavin
    • 2
  • Jacek Capala
    • 1
  • Ruimei Ma
    • 1
  • Gerard M. Morris
    • 3
  • Terry M. Button
    • 4
  • Tariq Aziz
    • 5
  • Nancy S. Peress
    • 5
  1. 1.Medical DepartmentBrookhaven National LaboratoryUptonUSA
  2. 2.Veterinary Clinical SciencesWashington State UniversityPullmanUSA
  3. 3.Research InstituteUniversity of Oxford, Churchill HospitalOxfordUK
  4. 4.Department of Radiology, Neuropathology Division, School of MedicineState University of New York at Stony BrookStony BrookUSA
  5. 5.Department of Pathology, Neuropathology Division, School of MedicineState University of New York at Stony BrookStony BrookUSA

Personalised recommendations