Journal of Atmospheric Chemistry

, Volume 37, Issue 3, pp 245–282 | Cite as

Fast-J: Accurate Simulation of In- and Below-Cloud Photolysis in Tropospheric Chemical Models

  • Oliver Wild
  • Xin Zhu
  • Michael J. Prather


Photolysis rates in the troposphere are greatly affected by the presenceof cloud and aerosol layers. Yet, the spatial variability of theselayers along with the difficulty of multiple-scattering calculationsfor large particles makes their inclusion in 3-D chemical transportmodels computationally very expensive.This study presents a flexible and accurate photolysis scheme, Fast-J,which calculates photolysis rates in the presence of an arbitrary mix ofcloud and aerosol layers. The algorithm is sufficiently fast to allow thescheme to be incorporated into 3-D global chemical transport models andhave photolysis rates updated hourly. It enables tropospheric chemistrysimulations to include directly the physical properties of the scatteringand absorbing particles in the column, including the full, untruncatedscattering phase function and the total, uncorrected optical depth.The Fast-J scheme is compared with earlier methods that have been usedin 3-D models to parameterize the effects of clouds on photolysis rates.The impact of Fast-J on tropospheric ozone chemistry is demonstratedwith the UCI tropospheric CTM.

photolysis rates tropospheric chemistry chemical transport modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. E., Demajistre, R., Lloyd, S. A., and Swaminathan, P. K., 1995: Impact of aerosols and clouds on the troposphere and stratosphere radiation-field with application to twilight photochemistry at 20 km, J. Geophys. Res. 100, 7135–7145.Google Scholar
  2. Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., Rossi, M. J., and Troe, J., 1997: Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry, Supplement V-IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, J. Phys. Chem. Ref. Data 26, 521–1011.Google Scholar
  3. Auer, L., 1967: Improved boundary conditions for the Feautrier method, Astrophys. J. 150, 53–55.Google Scholar
  4. Berntsen, T. K. and Isaksen, I. S. A., 1997: A global three-dimensional chemical transport model for the troposphere. 1. Model description and CO and ozone results, J. Geophys. Res. 102, 21239–21280.Google Scholar
  5. Brasseur, G. P., Hauglustaine, D. A., Walters, S., Rasch, P. J., Muller, J.-F., Granier, C., and Tie, X. X., 1998: MOZART, a global chemical tracer model for ozone and related chemical tracers. 1. Model description, J. Geophys. Res. 103, 28265–28289.Google Scholar
  6. Brock C. A., Jonsson, H. H., Wilson, J. C., Dye, J. E., Baumgardner, D., Borrmann, S., Pitts, M. C., Osborn, M., Decoursey, R. J., and Woods, D. C., 1993: Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt Pinatubo, Geophys. Res. Lett. 20, 2555–2558.Google Scholar
  7. Boucher, O., Schwartz, S. E., Ackerman, T. P., Anderson, T. L., Bergstrom, B., Bonnel, B., Chylek, P., Dahlback, A., Fouquart, Y., Fu, Q., Halthore, R. N., Haywood, J. M., Iversen, T., Kato, S., Kinne, S., Kirkevag, A., Knapp, K. R., Lacis, A., Laszlo, I., Mishchenko, M. I., Nemesure, S., Ramaswamy, V., Roberts, D. L., Russell, P., Schlesinger, M. E., Stephens, G. L., Wagener, R., Wang, M., Wong, J., and Yang, F., 1998: Intercomparison of models representing direct shortwave radiative forcing by sulphate aerosols, J. Geophys. Res. 103, 16979–16998.Google Scholar
  8. Cameron-Smith, P. J., 2000 (this issue): Incorporation of non-linear cross-section parameterizations into a fast photolysis computation code (Fast-J), J. Atmos. Chem. 37, 283–297.Google Scholar
  9. Chandrasekhar, S., 1960: Radiative Transfer, Dover, New York, p. 393.Google Scholar
  10. Chang, J. S., Brost, R. A., Isaksen, I. S. A., Madronich, S., Middleton, P., Stockwell, W. R., and Walcek, C. J., 1987: A three-dimensional Eulerian acid deposition model: Physical concepts and formulation, J. Geophys. Res. 92, 14681–14700.Google Scholar
  11. Cochran, W. D. and Trafton, L. M., 1978: Raman scattering in the atmospheres of the major planets, Astrophys. J. 219, 756–762.Google Scholar
  12. Dave J. V. and Armstrong, B. H., 1970: Computation of high-order associated Legendre Polynomials, J.Q.S.R.T. 10, 557–562.Google Scholar
  13. Deirmendjian, D., 1969: Electromagnetic Scattering on Spherical Polydispersions, American Elsevier, New York, p. 287.Google Scholar
  14. DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1997: Chemical kinetics and photochemical data for use in stratospheric modeling, JPL Publication, 97–4, Jet Propulsion Lab., Pasadena.Google Scholar
  15. Feautrier, P., 1964: Comptes Rendues 258, 3189–3199.Google Scholar
  16. Goody, R. M. and Yung, Y. L., 1989: Atmospheric Radiation, Oxford University Press, New York, p. 519.Google Scholar
  17. Hansen, J. E. and Travis, L., 1974: Light scattering in planetary atmospheres, Space Sci. Rev. 16, 527–610.Google Scholar
  18. Henyey, L. C. and Greenstein, J. L., 1941: Diffuse radiation in the galaxy, Astrophys. J. 93, 70–83.Google Scholar
  19. Hough, A. M., 1988: The calculation of photolysis rates for use in global tropospheric modelling studies, AERE Report R-13259, H.M. Stationery Office, London.Google Scholar
  20. Isaksen, I. S. A., Midtbo, K. H., Sunde, J., and Crutzen, P. J., 1977: A simplified method to include molecular scattering and reflection in calculations of photon fluxes and photodissociation rates, Geophys. Norv. 31, 11–26.Google Scholar
  21. Jacob, D., Gottlieb, E., and Prather, M. J., 1989: Chemistry of a polluted cloudy boundary layer, J. Geophys. Res. 94, 12975–13002.Google Scholar
  22. Joseph, J. H., Wiscombe, W. J., and Weinman, J. A., 1976: The delta-Eddington approximation for radiative flux transfer, J. Atmos. Sci. 33, 2452–2459.Google Scholar
  23. Kraus, A. B., Rohrer, F., Grobler, E. S., and Ehhalt, D. H., 1996: The global tropospheric distribution of NOx estimated by the three-dimensional chemical tracer model, J. Geophys. Res. 101, 18587–18604.Google Scholar
  24. Kylling, A., Stamnes, K., and Tsay, S. C., 1995: A reliable and efficient two-stream algorithm for spherical radiative transfer: Documentation of accuracy in realistic layered media, J. Atmos. Chem. 21, 115–150.Google Scholar
  25. Landgraf, J. and Crutzen, P. J., 1998: An efficient method for online calculations of photolysis and heating rates, J. Atmos. Sci. 55, 863–878.Google Scholar
  26. Liao, H., Yung, Y. L., and Seinfeld, J. H., 1999: Effects of aerosols on tropospheric photolysis rates in clear and cloudy atmospheres, J. Geophys. Res. 104, 23697–23707.Google Scholar
  27. Liousse, C., Penner, J. E., Chuang, C., Walton J. J., Eddleman, H., and Cachier, H., 1996: A global three-dimensional model study of carbonaceous aerosols, J. Geophys. Res. 101, 19411–19432.Google Scholar
  28. Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 1981: Tropospheric chemistry: A global perspective, J. Geophys. Res. 86, 7210–7254.Google Scholar
  29. Madronich, S., 1987: Photodissociation in the atmosphere: 1. Actinic flux and the effects of ground reflections and clouds, J. Geophys. Res. 92, 9740–9752.Google Scholar
  30. Michelangeli, D. V., Allen, M., Yung, Y. L., Shia, R. L., Crisp, D., Eluszkiewicz, J., 1992: Enhancement of atmospheric radiation by an aerosol layer, J. Geophys. Res. 97, 865–874.Google Scholar
  31. Mishchenko, M. I., Rossow, W. B., Macke, A., and Lacis, A. A., 1996: Sensitivity of cirrus cloud albedo, bidirectional reflectance and optical thickness retrieval accuracy to ice particle shape, J. Geophys. Res. 101, 16973–16985.Google Scholar
  32. Müller, J. F. and Brasseur, G., 1995: IMAGES: A three-dimensional chemical transport model of the global troposphere, J. Geophys. Res. 100, 16445–16490.Google Scholar
  33. Olsen, J., Prather, M., Berntsen, T., Carmichael, G., Chatfield, R., Connell, P., Derwent, R., Horowitz, L., Jin, S., Kanakidou, M., Kasibhatla, P., Kotamarthi, R., Kuhn, M., Law, K., Penner, J., Perliski, L., Sillman, S., Stordal, F., Thompson, A., and Wild, O., 1997: Results from the Intergovernmental Panel on Climate Change photochemical model intercomparison (PhotoComp), J. Geophys. Res. 102, 5979–5991.Google Scholar
  34. Penner, J. E., Dickinson, R. E., and O'Neill, C. A., 1992: Effects of aerosol from biomass burning on the global radiation budget, Science 256, 1432–1433.Google Scholar
  35. Prather, M. J., 1974: Solution of the inhomogeneous Rayleigh scattering atmosphere, Astrophys.J. 192, 787–792.Google Scholar
  36. Prather, M., McElroy, M., Wofsy, S., Russell, G., and Rind, D., 1987: Chemistry of the global troposphere: Fluorocarbons as tracers of air motion, J. Geophys. Res. 92, 6579–6613.Google Scholar
  37. Prather, M. J. and Remsberg, E. E. (eds), 1993: The atmospheric effects of stratospheric aircraft: Report of the 1992 stratospheric models and measurements workshop, NASA Ref. Publ., 1292, p. 672.Google Scholar
  38. Quinn, P. K., Kapustin, V. N., Bates, T. S., and Covert, D. S., 1996: Chemical and optical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport, J. Geophys. Res. 101, 6931–6951.Google Scholar
  39. Rind, D. and Lerner, J., 1996: Use of on-line tracers as a diagnostic tool in general circulation model development: 1. Horizontal and vertical transport in the troposphere, J. Geophys. Res. 101, 12667–12683.Google Scholar
  40. Roelofs, G. J. and Lelieveld, J., 1995: Distribution and budget of O3 in the troposphere calculated with a chemistry general circulation model, J. Geophys. Res. 100, 20983–20998.Google Scholar
  41. Rossow, W. B. and Schiffer, R. A., 1991: ISCCP cloud data products, Bull. Amer. Meteor. Soc. 72, 2–20.Google Scholar
  42. Schimel, D. et al., 1996: Radiative forcing of climate, in J. T. Houghton et al. (eds), Climate Change, 1995-The Science of Climate Change (Chapter 2), Cambridge University Press, New York, pp. 65–131.Google Scholar
  43. Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski, Y. J., Foreman-Fowler, M., Jones, D. B. A., Horowitz, L. W., Fusco, A. C., Brenninkmeijer, C. A. M., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 2000: Three-dimensional climatological distribution of tropospheric OH: Update and evaluation, J. Geophys. Res. 105, 8931–8980.Google Scholar
  44. Stamnes, K., Tsay, S. C., Wiscombe, W., and Jayaweera, K., 1988: Numerically stable algorithm for discrete-ordinate method radiative transfer in multiple scattering and emitting layered media, Applied Optics 27 (12), 2502–2509.Google Scholar
  45. Tegen, I. and Fung, I., 1995: Contribution to the atmospheric mineral dust load from land surface modification, J. Geophys. Res. 100, 18707–18726.Google Scholar
  46. Thekeakara, M. P., 1974: Extra-terrestrial solar spectrum, 3000–6100 A at 1 A intervals, Appl. Opt. 13, 518–522.Google Scholar
  47. van de Hulst, H. C., 1981: Light Scattering by Small Particles, Dover, New York, p. 471.Google Scholar
  48. Wild, O. and Prather, M. J., 2000: Excitation of the primary tropospheric chemical mode in a global 3-D model, J. Geophys. Res., accepted.Google Scholar
  49. Wilson J. C., Jonsson, H. H., Brock, C. A., Toohey, D. W., Avallone, L. M., Baumgardner, D., Dye, J. E., Poole, L. R., Woods, D. C., Decoursey, R. J., Osborn, M., Pitts, M. C., Kelly, K. K., Chan, K. R., Ferry, G. V., Loewenstein, M., Podolske, J. R., and Weaver, A., 1993: In-situ observations of aerosol and chlorine monoxide after the 1991 eruption of Mount Pinatubo–effect of reactions on sulfate aerosol, Science 261, 1140–1143.Google Scholar
  50. Wiscombe, W. J., 1977: The delta-M method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions, J. Atmos. Sci. 34, 1408–1422.Google Scholar
  51. World Meteorological Organisation, 1986: Atmospheric Ozone 1985: Assessment of our understanding of the processes controlling its present distribution and change, Global Ozone Research and Monitoring Project, Report 16.Google Scholar
  52. Zeng, J., Madronich, S., and Stamnes, K., 1996: A note on the use of the two-stream delta-scaling approximation for calculating atmospheric photolysis rate coefficients, J. Geophys. Res. 101, 14525–14530.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Oliver Wild
    • 1
  • Xin Zhu
    • 1
  • Michael J. Prather
    • 1
  1. 1.Earth System ScienceUniversity of CaliforniaIrvineU.S.A.

Personalised recommendations