Plant Cell, Tissue and Organ Culture

, Volume 60, Issue 1, pp 15–21 | Cite as

Influence of nutrients and carbohydrate supply on the phenol composition of apple shoot cultures

  • Astrid Lux-Endrich
  • Dieter Treutter
  • Walter Feucht

Abstract

Apple shoot cultures accumulate phenolic acids, flavonols, catechins, and procyanidins. Increasing the sucrose content and reducing the macronutrient content of culture media both resulted in an enhanced content of phenolic substances. The qualitative composition of the substances was affected as well. Morphology of the shoots, preculture and time of sampling in the subculture interval influenced the reaction pattern.

Malus×domestica plant nutrition procyanidins tissue culture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amiot MJ (1990) Les composés phénoliques de la pomme. Intérêts agronomiques et conséquences technologiques. 9o Colloque sur les recherches fruitères (pp. 279–289). AvignonGoogle Scholar
  2. Barnes EH& Williams EB (1961) The role of phloridzin in the hostparasite of apple scab disease. Can. J. Microbiol. 7: 525–534Google Scholar
  3. Bauer H, Treutter D, Schmid PPS, Schmitt E& Feucht W (1989) Specific accumulation of o-diphenols in stressed leaves of Prunus avium. Phytochem. 28: 1363–1364Google Scholar
  4. Bauer H& Treutter D (1990) Identification of Pelargonium-cultivars by phenolic ‘fingerprints'. II. Cultivar identification by HPLCanalysis of leaf phenols combined with discriminant analysis. Gartenbauwiss. 55: 187–191Google Scholar
  5. Bongue-Bartelsman M& Philipps DA (1995) Nitrogen stress regulates gene expression of enzymes in the flavonoid biosynthetic pathway of tomato. Plant Physiol. Biochem. 33: 539–546Google Scholar
  6. Bryant JP, Chapin FS, Reichardt PB& Clausen TP (1987) Response of winter chemical defense in Alaska paper birch and green alder to manipulation of plant carbon/nutrient balance. Oecologia 72: 510–514Google Scholar
  7. Del Moral R (1972) On the variability of chlorogenic acid concentration. Oecologia 9: 289–300Google Scholar
  8. DiCosmo F& Towers GHN (1983) Stress and secondary metabolism in cultured plant cells. In: Timmermann BN, Steelink C& Loewus FA (eds) Phytochemical Adaptions to Stress (pp. 97–176). Plenum Press, New YorkGoogle Scholar
  9. Estiarte M, Filella I, Serra J& Penuelas J (1994) Effects of nutrient and water stress on leaf phenolic content of peppers and susceptibility to generalist herbivore Helicoverpa armigera (Hubner). Oecologia 99: 387–391Google Scholar
  10. Feucht W& Schmid PPS (1988) Flavanols in needles of Abies alba in response to different rural sites. Angew. Botanik 62: 21–30Google Scholar
  11. Gershenzon J (1983) Changes in the levels of plant secondary metabolites under water and nutrient stress. In: Timmermann BN, Steelink C& Loewus FA (eds) Phytochemical Adaptions to Stress (pp. 273–320). Plenum Press, New YorkGoogle Scholar
  12. Holowoczak J, Kuc J& Williams EB (1962) Metabolism of D-and L-phenylalanine in Malus related to susceptibility and resistance to Venturia inaequalis. Phytopath. 52: 1019–1023Google Scholar
  13. Kirkham DS (1957) The significance of polyphenolic metabolites of apple and pear in the host relation of Venturia inaequalis and Venturia pirina. J. Gen. Microbiol. 17: 491–504Google Scholar
  14. Koeppe DE, Southwick LM& Bittell JE (1976) The relationship of tissue chlorogenic acid concentrations and leaching of phenolics from sunflowers grown under varying phosphate nutrient conditions. Can. J. Bot. 54: 593–599Google Scholar
  15. Larsson S, Wiren A, Lundgren L& Ericsson T (1986) Effects of light and nutrient stress on leaf phenolic chemistry in Salix dasyclados and susceptibility to Galerucella lineola (Coleoptera). OIKOS 47(2): 205–210Google Scholar
  16. Lewis NG& Yamamoto E (1989) Tannins – their place in plant metabolism. In: Hemingway RW& Karchesy JJ (eds) Chemistry and Significance of Condensed Tannins (pp. 23–46). Plenum Press, New YorkGoogle Scholar
  17. Mayr U (1995) Einfluß des Phenolstoffwechsels beim Apfel (Malus domestica) auf das Resistenzpotential gegen Apfelschorf (Venturia inaequalis). Ph.D. Thesis, Technical University of MunichGoogle Scholar
  18. Mayr U, Fünfgelder S, Treutter D& Feucht W (1995a) Induction of phenol accumulation by pesticides under the control of environmental factors. Proc. European Foundation for Plant Pathology: 399–402Google Scholar
  19. Mayr U, Treutter D, Santos-Buelga C, Bauer H& Feucht W (1995b) Developmental changes in the phenol concentrations of ‘Golden Delicious’ apple fruits and leaves. Phytochem. 38(5): 1151–1155Google Scholar
  20. Mayr U, Michalek S, Treutter D& Feucht W (1997) Phenolic compounds of apple and their relationship to scab resistance. J. Phytopath. 145: 69–75Google Scholar
  21. Michalek S, Mayr U, Treutter D, Lux-Endrich A, Gutmann M, Feucht W& Geibel M (1999) Role of flavan-3-ols in resistance of apple trees to Venturia inaequalis. Acta Hort. 484: 535–539Google Scholar
  22. Mori T& Sakurai M (1994) Production of anthocyanin from strawberry cell suspension cultures; effects of sugar and nitrogen. J. Food Sci. 59(3): 588–593Google Scholar
  23. Murashige T& Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497Google Scholar
  24. Nozzolillo C (1978) The effects of mineral nutrient deficiencies on the anthocyan pigmentation in vegetative tissues. Phytochem. Bull. 11: 48–54Google Scholar
  25. Oydvin J& Richardson DG (1987) A paper chromatographic survey of the phenol content of apple peel from scab resistant and scab susceptible genotypes. Norwegian J. Agr. Sci. 1: 7–13Google Scholar
  26. Pincinelli A, Dapena E& Mangas JJ (1995) Polyphenolic pattern in apple tree leaves in relation to scab resistance. A preliminary study. J. Agric. Food Chem. 43: 2273–2278Google Scholar
  27. Pritchard S, Peterson C, Runion GB, Prior S& Rogers H (1997) Atmospheric CO2 concentration, N availability, and water status affect patterns of ergastic substance deposition in longleaf pine (Pinus palustris Mill.) foliage. Trees 11(8): 494–503Google Scholar
  28. Raa J (1968) Polyphenols and natural resistance of apple leaves against Venturia inaequalis. Neth. J. Pl. Path. 74: 37–45Google Scholar
  29. Treutter D (1987) Modelluntersuchungen zur Akkumulation des Flavanons Prunin an Prunus-avium-Kalluskulturen. Gartenbauwiss. 52: 196–199Google Scholar
  30. Treutter D (1989) Chemical reaction detection of catechins and proanthocyanidins with 4-dimethylaminocinnamaldehyde. J. Chromatogr. 467: 185–193Google Scholar
  31. Treutter D (2000) Biosynthesis of phenolic compounds and its regulation in apple. Plant Growth Regulation (in press)Google Scholar
  32. Treutter D, Galensa R, Feucht W& Schmid PPS (1985) Flavanone glucosides in callus and phloem of Prunus avium: Identification and stimulation of their synthesis. Physiol. Plant. 65: 95–101Google Scholar
  33. Treutter D& Feucht W (1988) Accumulation of the flavonoid prunin in Prunus avium/P. cerasus grafts and its possible involvement in the process of incompatibility. Acta Hortic. 227: 74–78Google Scholar
  34. Treutter D& Feucht W (1990) The pattern of flavan-3-ols in relation to scab resistance of apple cultivars. J. Hort. Sci. 65: 511–517Google Scholar
  35. Treutter D, Santos-Buelga C, Gutmann M& Kolodziej (1994) Identification of flavan-3-ols and procyanidins by HPLC and chemical reaction detection. J. Chromatogr. A 667: 290–297Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Astrid Lux-Endrich
    • 1
  • Dieter Treutter
    • 1
  • Walter Feucht
    • 1
  1. 1.Institute of Fruit ScienceTechnische Universität MünchenFreising-WeihenstephanGermany

Personalised recommendations