Skip to main content
Log in

Cell cycle regulation in the course of nodule organogenesis in Medicago

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The molecular mechanisms of de novo meristem formation, cell differentiation and the integration of the cell cycle machinery into appropriate stages of the developmental programmes are still largely unknown in plants. Legume root nodules, which house nitrogen-fixing rhizobia, are unique plant organs and their development may serve as a model for organogenetic processes in plants. Nodules form and are essential for the plant only under limitation of combined nitrogen in the soil. Moreover, their development is triggered by external mitogenic signals produced by their symbiotic partners, the rhizobia. These signals, the lipochitooligosaccharide Nod factors, act as host-specific morphogens and induce the re-entry of root cortical cells into mitotic cycles. Maintenance of cell division activity leads to the formation of a persistent nodule meristem from which cells exit continuously and enter the nodule differentiation programme, involving multiple cycles of endoreduplication and enlargement of nuclear and cell volumes. While the small diploid 2C cells remain uninfected, the large polyploid cells can be invaded and, after completing the differentiation programme, host the nitrogen-fixing bacteroids. This review summarizes the present knowledge on cell cycle reactivation and meristem formation in response to Nod factors and reports on a novel plant cell cycle regulator that can switch mitotic cycles to differentiation programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ardourel, M., Demont, N., Debelle, F.D., Maillet, F., de Billy, F., Prome, J.C., Denarie, J. and Truchet, G. 1994. Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6: 1357–1374.

    PubMed  Google Scholar 

  • Asad, S., Fang, Y.W., Wycoff, K.L. and Hirsch, A.M. 1994. Isolation and characterization of cDNA and genomic clones of MsENOD40; transcripts are detected in meristematic cells of alfalfa. Protoplasma 183: 10–23.

    Google Scholar 

  • Bartik, J., Bartkova, J. and Lukas, J. 1996. The retinoblastoma protein pathway and the restriction point. Curr. Opin. Cell Biol. 8: 805–814.

    PubMed  Google Scholar 

  • Bauer, P., Ratet, P., Crespi, M.D., Schultze, M. and Kondorosi, A. 1996. Nod factors and cytokinins induce similar cortical cell division, amyloplast deposition and MsEnod12A expression patterns in alfalfa roots. Plant J. 10: 91–105.

    Google Scholar 

  • Bono, J.J., Riond, J., Nicolaou, K.C., Bockovich, N.J., Estevez, V.A., Cullimore, J.V. and Ranjeva, R. 1995. Characterization of a binding site for chemically synthesized lipo-oligosaccharidic NodRm factors in particulate fractions prepared from roots. Plant J. 7: 253–260.

    PubMed  Google Scholar 

  • Brewin, N.J. 1998. Tissue and cell invasion by Rhizobium: the structure and development of infection threads and symbiosomes. In: H.P. Spaink, A. Kondorosi and P. Hooykaas (Eds.) The Rhizobiaceae, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 417–429.

    Google Scholar 

  • Caetano-Anolles, G., Joshi, P.A. and Gresshoff, P.M. 1993. Nodule morphogenesis in the absence of Rhizobium. In: R. Palacios, J. Mora and W.E. Newton (Eds.) New Horizons in Nitrogen Fixation, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 297–302.

    Google Scholar 

  • Capella, D., Barloy-Hubler, F., Gatius, M.T., Gouzy, J. and Galibert, F. 1999. A high density physical map of Sinorhizobium meliloti 1021 chromosome derived from bacterial artificial chromosome library. Proc. Natl. Acad. Sci. USA 96: 9357–9362.

    PubMed  Google Scholar 

  • Cebolla, A., Vinardell, J.M., Kiss, E., Olah, B., Roudier, F., Kondorosi, A. and Kondorosi, E. 1999. The mitotic inhibitor ccs52 is required for endoreplication and ploidy-dependent cell enlargement in plants. EMBO J. 18: 4476–4484.

    PubMed  Google Scholar 

  • Charon, C., Johansson, C., Kondorosi, E., Kondorosi, A. and Crespi, M. 1997. enod40 induces dedifferentiation and division of root cortical cells in legumes. Proc. Natl. Acad. Sci. USA 94: 8901–8906.

    PubMed  Google Scholar 

  • Charon, C., Sousa, C., Crespi, M. and Kondorosi, A. 1999. Alteration of enod40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti. Plant Cell 11: 1953–1965.

    PubMed  Google Scholar 

  • Cooper, J.B. and Long, S.R. 1994. Morphogenetic rescue of Rhizobium meliloti nodulation mutants by trans-zeatin secretion. Plant Cell 6: 215–225.

    Article  PubMed  Google Scholar 

  • Covitz, P.A., Smith, L.S. and Long, S.R. 1998. Expressed sequence tags from a root-hair-enriched Medicago truncatula cDNA library. Plant Physiol. 117: 1325–1332.

    Article  PubMed  Google Scholar 

  • Crespi, M.D., Jurkevitch, E., Poiret, M., D'Aubenton-Carafa, Y., Petrovics, G., Kondorosi, E. and Kondorosi, A. 1994. enod40, a gene expressed during nodule organogenesis, codes for a nontranslatable RNA involved in plant growth. EMBO J. 13: 5099–5112.

    PubMed  Google Scholar 

  • Dahl, M., Meskiene, I., Bogre, L., Ha, D.T., Swoboda, I., Hubmann, R., Hirt, H. and Heberle-Bors, E. 1995. The D-type alfalfa cyclin gene cycMs4 complements G1 cyclin-deficient yeast and is induced in the G1 phase of the cell cycle. Plant Cell 7: 1847–1857.

    Article  PubMed  Google Scholar 

  • Dehio, C. and de Bruijn, F.J. 1992. The early nodulin gene SrEnod2 from Sesbania rostrata is inducible by cytokinin. Plant J. 2: 117–128.

    PubMed  Google Scholar 

  • De la Pena T.C., Frugier, F., McKhann, H.I., Bauer, P., Brown, S., Kondorosi, A. and Crespi, M. 1997. A carbonic anhydrase gene is induced in the nodule primordium and its cell-specific expression is controlled by the presence of Rhizobium during development. Plant J. 11: 407–420.

    PubMed  Google Scholar 

  • Downie, J.A. 1998. Functions of rhizobial nodulation genes. In: H.P. Spaink, A. Kondorosi and P. Hooykaas (Eds.) The Rhizobiaceae, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 387–402.

    Google Scholar 

  • Ehrhardt, D.W., Atkinson, E.M. and Long, S.R. 1992. Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science 256: 998–1000.

    PubMed  Google Scholar 

  • Ehrhardt, D.W., Wais, R. and Long, S.R. 1996. Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 85: 673–681.

    PubMed  Google Scholar 

  • Fang, G., Hongtao, Y. and Kirschner, M.W. 1998. Direct binding of CDC20 protein family members activates the anaphasepromoting complex in mitosis and G1. Mol. Cell 2: 163–171.

    PubMed  Google Scholar 

  • Fang, Y. and Hirsch, A. 1998. Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in transgenic alfalfa. Plant Physiol. 116: 53–68.

    PubMed  Google Scholar 

  • Felle, H.H., Kondorosi, E., Kondorosi, A. and Schultze, M. 1995. Nod signal-induced plasma membrane potential changes in alfalfa root hairs are differentially sensitive to structural modifications of the lipochitooligosaccharide. Plant J. 7: 939–947.

    Google Scholar 

  • Felle, H.H., Kondorosi, E., Kondorosi, A. and Schultze, M. 1996. Rapid alkalinization in alfalfa root hairs in response to rhizobial lipochitooligosaccharide signals. Plant J. 10: 295–301.

    Google Scholar 

  • Felle, H.H., Kondorosi, E., Kondorosi, A. and Schultze, M. 1998. The role of ion fluxes in Nod factor signalling in Medicago sativa. Plant J. 13: 455–463.

    Google Scholar 

  • Fernandez-Lopez, M., Goormachtig, S., Gao, M.S., Dhaeze, W., Van Montagu, M. and Holsters, M. 1998. Ethylene-mediated phenotypic plasticity in root nodule development on Sesbania rostrata. Proc. Natl. Acad. Sci. USA 95: 12724–12728.

    PubMed  Google Scholar 

  • Fountain, M., Murray, J. and Beck, E. 1999. Nucleotide sequence of a cDNA encoding a cyclin D3 protein (Accession No AJ011776) from suspension cultured photoautotrophic Chenopodium rubrum L. cells. Plant Physiol. 119: 363.

    PubMed  Google Scholar 

  • Freiberg, C., Fellay, R., Bairoch, A., Broughton, W.J., Rosenthal, A. and Perret, X. 1997. Molecular basis of symbiosis between Rhizobium and legumes. Nature 387: 394–401.

    PubMed  Google Scholar 

  • Goodlass, G. and Smith, K.A. 1979. Effect of ethylene on root extension and nodulation of pea (Pisum sativum L.) and white clover (Trifolium repens L.). Plant Soil 51: 387–395.

    Google Scholar 

  • Goormachtig, S., Mergaert, P., Van Montagu, M. and Holsters, M. 1998. The symbiotic interaction between Azorhizobium caulinodans and Sesbania rostrata: molecular cross-talk in a beneficial plant-bacterium interaction. In: Subcellular Biochemistry vol. 28: Plant-Microbe Interaction, Press Biwas and Das, New York, pp. 117–164.

    Google Scholar 

  • Grafi, G., Burnett, R.J., Helentjaris, T., Larkins, B.A., DeCaprio, J.A., Sellers, W.R. and Kaelin, W. Jr. 1996. A maize cDNA encoding a member of the retinoblastoma protein family: involvement in endoreduplication. Proc. Natl. Acad. Sci. USA 93: 8962–8967.

    Google Scholar 

  • Gresshoff, P. and Mohapatra, S. 1981. Legume cell and tissue culture. In: Tissue Culture of Economically Important Crop Plants, Press SU, Singapore, pp. 11–24.

    Google Scholar 

  • Grobbelaar, N., Clarke, B. and Hough, M.C. 1971. The nodulation and nitrogen fixation of isolated roots of Phaseolus vulgaris L. III. The effect of carbon dioxide and ethylene. Plant Soil, special volume: 215–223.

  • Gutierrez, C. 1998. The retinoblastoma pathway in plant cell cycle and development. Curr. Opin. Plant Biol. 1: 492–497.

    PubMed  Google Scholar 

  • Hagen, G., Martin, G., Li, Y. and Guilfoyle, T.J. 1991. Auxininduced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol. Biol. 17: 567–579.

    PubMed  Google Scholar 

  • Heidstra, R., Yang, W.C., Yalcin, Y., Peck, S., Emons, A.M., van Kammen, A. and Bisseling, T. 1997. Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development 124: 1781–1787.

    PubMed  Google Scholar 

  • Hemerly, A.S., Ferreira, P., de Almeida Engler, J., Van Montagu, M., Engler, G. and Inzé, D. 1993. cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5: 1711–1723.

    Article  PubMed  Google Scholar 

  • Hirsch, A.M. 1992. Developmental biology of legume nodulation. New Phytol. 122: 211–237.

    Google Scholar 

  • Hirsch, A.M. and LaRue, T.A. 1997. Is the legume nodule a modi-fied root or stem or an organ sui generis? Crit. Rev. Plant Sci. 16: 361–392.

    Google Scholar 

  • Jelenska, J., Deckert, J., Kondorosi, E., Legocki, A.B. 2000. Mitotic B-type cyclins are differentially regulated by phytohormones and during yellow lupine nodule development. Plant Science 150: 29–39.

    Google Scholar 

  • Kim, Y.S., Yoon, G.M., Cho, H.S., Park, S.H. and Pai, H.S. 1998. Chrk1 receptor-like kinase contains a chitinase-related sequence in its extracellular domain, which has a specific binding activity for chitin molecules. In: 4th Korea-Germany Joint Symposium in Plant Biotechnology, pp. 99–100.

  • Kitumara, K., Maekawa, H. and Shimoda, C. 1998. Fission yeast Ste9, a homolog of HctI/CdhI and fizzy-related, is a novel negative regulator of cell cycle progression during G1-phase. Mol. Biol. Cell 9: 1065–1080.

    PubMed  Google Scholar 

  • Kouchi, H. and Hata, S. 1993. Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol. Gen. Genet. 238: 106–119.

    PubMed  Google Scholar 

  • Lee, K.H. and LaRue, T.A. 1992. Exogenous ethylene inhibits nodulation of Pisum sativum L. cv. Sparkle. Plant Physiol. 100: 1759–1763.

    Google Scholar 

  • Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Prome, J.C. and Denarie, J. 1990. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344: 781–784.

    Article  PubMed  Google Scholar 

  • Libbenga, K.R., van Iren, F., Bogers, R.J. and Schraag-Lamers, M.F. 1973. The role of hormones and gradients in the initiation of cortex proliferation and nodule formation in Pisum sativum L. Planta 114: 29–39.

    Google Scholar 

  • Lorca, T., Castro, A., Martinez, A.M., Vigneron, S., Morin, N., Sigrist, S., Lehner, C., Doree, M. and Labbe, J.C. 1998. Fizzy is required for activation of the APC/cyclosome in Xenopus egg extracts. EMBO J. 17: 3565–3575.

    PubMed  Google Scholar 

  • Martinez-Romero, E. and Caballero-Mellado, J. 1996. Rhizobium phylogenies and bacterial genetic diversity. Crit. Rev. Plant Sci. 15: 113–140.

    Google Scholar 

  • Matvienko, M., van de Sande, K., Yang, W.C., van Kammen, A., Bisseling, T. and Franssen, H. 1994. Comparison of soybean and pea ENOD40 cDNA clones representing genes expressed during both early and late stages of nodule development. Plant Mol. Biol. 26: 487–493.

    PubMed  Google Scholar 

  • McKhann, H.I., Frugier, F., Petrovics, G., De la Pena, T.C., Jurkevitch, E., Brown, S., Kondorosi, E., Kondorosi, A. and Crespi, M. 1997. Cloning of a WD-repeat-containing gene from alfalfa (Medicago sativa): a role in hormone-mediated cell division? Plant Mol. Biol. 34: 771–780.

    PubMed  Google Scholar 

  • Meskiene, I., Bögre, L., Dahl, M., Pirck, M., Thi Cam Ha, D., Swoboda, I., Heberle-Bors, E., Ammerer, G. and Hirt, H. 1995. cycMs3, a novel B-type alfalfa cyclin gene, is induced in the G0-to-G1 transition of the cell cycle. Plant Cell 7: 759–771.

    Article  PubMed  Google Scholar 

  • Mulligan, J.T. and Long, S.R. 1985. Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proc. Natl. Acad. Sci. USA 82: 6609–6613.

    PubMed  Google Scholar 

  • Nakagami, H., Sekine, M., Murakami, H. and Shinmyo, A. 1999. Tobacco retinoblastoma-related protein phosphorylated by a distinct cyclin-dependent kinase complex with Cdc2/cyclinD in vitro. Plant J. 18: 243–252.

    PubMed  Google Scholar 

  • Neer, E.J., Schmidt, C.J., Nambudripad, R. and Smith, T.F. 1994. The ancient regulatory-protein family of WD-repeat proteins. Nature 371: 297–300.

    Article  PubMed  Google Scholar 

  • Niebel, A., Bono, J.J., Ranjeva, R. and Cullimore, J.V. 1997. Identification of a high affinity binding site for lipo-oligosaccharidic NodRm factors in the microsomal fraction of Medicago cell suspension cultures. Mol. Plant-Microbe Interact. 10: 132–134.

    Google Scholar 

  • Papadopoulou, K., Roussis, A. and Katinakis, P. 1996. Phaseolus ENOD40 is involved in symbiotic and non-symbiotic organogenetic processes: expression during nodule and lateral root development. Plant Mol. Biol. 30: 403–417.

    Article  PubMed  Google Scholar 

  • Penmetsa, R.V. and Cook, D.R. 1997. A legume ethyleneinsensitive mutant hyperinfected by its rhizobial symbiont. Science 275: 527–530.

    Article  PubMed  Google Scholar 

  • Peters, N.K. and Crist-Estes, D.K. 1989. Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol. 91: 690–693.

    Google Scholar 

  • Pingret, J.L., Journet, E.P. and Barker, D.G. 1998. Rhizobium Nod factor signaling: evidence for a G protein-mediated transduction mechanism. Plant Cell 10: 659–671.

    Article  PubMed  Google Scholar 

  • Prinz, S., Hwang, E.S., Visitin, R. and Amon, A. 1998. The regulation of Cdc20 proteolysis reveals a role for the APC components Cdc23 and Cdc27 during S phase and early mitosis. Curr. Biol. 8: 750–760.

    PubMed  Google Scholar 

  • Reed, S.I. 1997. Control of the G1/S transition. In: Checkpoint Controls and Cancer 29, Fund ICR, pp. 7–23.

  • Relic, B., Talmont, F., Kopcinska, J., Golinowski, W., Prome, J.C. and Broughton, W.J. 1993. Biological activity of Rhizobium sp. NGR234 Nod-factors on Macroptilium atropurpureum. Mol. Plant-Microbe Interact. 6: 764–774.

    PubMed  Google Scholar 

  • Renaudin, J.P., Doonan, J.H., Freeman, D., Hashimoto, J., Hirt, H., Inzé, D., Jacobs, T., Kouchi, H., Rouze, P., Sauter, M., Savouré, A., Sorrell, D.A., Sundaresan, V. and Murray, J.A. 1996. Plant cyclins: a unified nomenclature for plant A-, B-and D-type cyclins based on sequence organization. Plant Mol. Biol. 32: 1003–1018.

    PubMed  Google Scholar 

  • Renz, A., Fountain, M. and Beck, E. 1997. Nucleotide sequence of a cDNA encoding a D-type cyclin (Accession No. Y10162) from a photoautotrophic cell suspension culture of Chenopodium rubrum L. Plant Physiol. 113: 1004.

    Google Scholar 

  • Roche, P., Debelle, F., Maillet, F., Lerouge, P., Faucher, C., Truchet, G., Denarie, J. and Prome, J.C. 1991. Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67: 1131–1143.

    Article  PubMed  Google Scholar 

  • Rolfe, B.G. 1988. Flavones and isoflavones as inducing substances of legume nodulation. BioFactors 1: 3–10.

    PubMed  Google Scholar 

  • Roudier, F., Fedorova, E., Györgyey, J., Fehér, A., Brown, S., Kondorosi, A. and Kondorosi, E. 2000. Cell cycle function of a Medicago sativa A2-type cyclin interacting with a PSTAIREtype cyclin-dependent kinase and a retinoblastoma protein. Plant J. (in press).

  • Savouré, A., Magyar, Z., Pierre, M., Brown, S., Schultze, M., Dudits, D., Kondorosi, A. and Kondorosi, E. 1994. Activation of the cell cycle machinery and the isoflavonoid biosynthesis pathway by active Rhizobium meliloti Nod signal molecules in Medicago microcallus suspensions. EMBO J. 13: 1093–1102.

    PubMed  Google Scholar 

  • Savouré, A., Sallaud, C., El-Turk, J., Zuanazzi, J., Ratet, P., Schultze, M., Kondorosi, A., Esnault, R. and Kondorosi, E. 1997. Distinct response of Medicago suspension cultures and roots to Nod factors and chitin oligomers in the elicitation of defense-related responses. Plant J. 11: 277–287.

    Google Scholar 

  • Schlaman, H.R.M., Gisel, A.A., Quaedvlieg, N.E.M., Bloemberg, G.V., Lugtenberg, B.J.J., Kijne, J.W., Potrykus, I., Spaink, H.P. and Sautter, C. 1997. Chitin oligosaccharides can induce cortical cell division in roots of Vicia sativa when delivered by ballistic microtargeting. Development 124: 4887–4895.

    PubMed  Google Scholar 

  • Schlaman, H.R.M., Phillips, D.A. and Kondorosi, E. 1998. Genetic organization and transcriptional regulation of rhizobial nodulation genes. In: H.P. Spaink, A. Kondorosi and P. Hooykaas (Eds) The Rhizobiaceae, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 361–386.

    Google Scholar 

  • Schmidt, J.S., Harper, J.E., Hoffman, T.K. and Bent, A.F. 1999. Regulation of soybean nodulation independent of ethylene signaling. Plant Physiol. 119: 951–960.

    PubMed  Google Scholar 

  • Schultze, M. and Kondorosi, A. 1998. Regulation of symbiotic root nodule development. Annu. Rev. Genet. 32: 33–57.

    PubMed  Google Scholar 

  • Schultze, M., Kondorosi, E., Ratet, P., Buire, M. and Kondorosi, A. 1994. Cell and molecular biology of Rhizobium-plant interactions. Int. Rev. Cytol. 156: 1–75.

    Google Scholar 

  • Schultze, M., Staehelin, C., Brunner, F., Genetet, I., Legrand, M., Fritig, B., Kondorosi, E. and Kondorosi, A. 1998. Plant chitinase/ lysozyme isoforms show distinct substrate specificity and cleavage site preference towards lipochitooligosaccharide Nod signals. Plant J. 16: 571–580.

    Google Scholar 

  • Schwab, M., Lutum, A.S. and Seufert, W. 1997. Yeast HctI is a regulator of Clb2 cyclin proteolysis. Cell 90: 683–693.

    PubMed  Google Scholar 

  • Sekine, M., Ito, M., Uemukai, K., Maeda, Y., Nakagami, H. and Shinmyo, A. 1999. Isolation and characterization of the E2F-like gene in plants. FEBS Lett. 460: 117–122.

    PubMed  Google Scholar 

  • Sherr, C.J. 1994. G1 phase progression: cycling on cue. Cell 79: 551–555.

    Article  PubMed  Google Scholar 

  • Sherr, C.J. 1995. D-type cyclins. Trends Biochem. Sci 20: 187–190.

    PubMed  Google Scholar 

  • Shimizu, S. and Mori, H. 1998. Analysis of cycles of dormancy and growth in pea axillary buds based on mRNA accumulation patterns of cell cycle-related genes. Plant Cell Physiol. 39: 255–262.

    Google Scholar 

  • Sigrist, S.J. and Lehner, C.F. 1997. Drosophila fizzy related downregulates mitotic cyclins and is required for cell proliferation arrest and entry into endocycles. Cell 90: 671–681.

    PubMed  Google Scholar 

  • Smit, G., de Koster, C.C., Schripsema, J., Spaink, H.P., van Brussel, A.A. and Kijne, J.W. 1995. Uridine, a cell division factor in pea roots. Plant Mol. Biol. 29: 869–873.

    PubMed  Google Scholar 

  • Sondek, J., Bohm, A., Lambright, D.G., Hamm, H.E. and Sigler, P.B. 1996. Crystal structure of a G-protein beta gamma dimer at 2.1Åresolution. Nature 379: 369–374.

    PubMed  Google Scholar 

  • Soni, R., Carmichael, J.P., Shah, Z.H. and Murray, J.A. 1995. A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell 7: 85–103.

    Article  PubMed  Google Scholar 

  • Sorrell, D.A., Combettes, B., Chaubet-Gigot, N., Gigot, C. and Murray, J.A. 1999. Distinct cyclin D genes show mitotic accumulation or constant levels of transcripts in tobacco Bright Yellow-2 cells. Plant Physiol. 119: 343–352.

    Article  PubMed  Google Scholar 

  • Takahashi, Y., Hasezawa, S., Kusaba, M. and Nagata, T. 1995. Expression of the auxin-regulated parA gene in transgenic tobacco and nuclear localization of its gene products. Planta 196: 111–117.

    PubMed  Google Scholar 

  • Takahashi, Y., Sakai, T., Ishida, S. and Nagata, T. 1995. Identification of auxin-responsive elements of parB and their expression in apices of shoot and root. Proc. Natl. Acad. Sci. USA 92: 6359–6363.

    PubMed  Google Scholar 

  • Truchet, G. 1978. Sur l'état diploïde des cellules du méristème des nodules radiculaires des légumineuses. Ann. Sci. Nat. Bot. Paris 19: 3–38.

    Google Scholar 

  • Truchet, G., Barker, D.G., Camut, S., De Billy, F., Vasse, J. and Huguet, T. 1989. Alfalfa nodulation in the absence of Rhizobium. Mol. Gen. Genet. 219: 65–68.

    Google Scholar 

  • Truchet, G., Roche, P., Lerouge, P., Vasse, J., Camut, S., De Billy, F., Promé, J.C. and Dénarié, J. 1991. Sulphated lipooligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351: 670–673.

    Article  Google Scholar 

  • van Brussel, A.A.N., Bakhuizen, R., van Spronsen, P.C., Spaink, H.P., Tak, T., Lugtenberg, B.J.J. and Kijne, J.W. 1992. Induction of preinfection thread structures in the leguminous host plant by mitogenic lipo-oligosaccharides of Rhizobium. Science 257: 70–72.

    Google Scholar 

  • van de Sande, K., Pawlowski, K., Czaja, I., Wieneke, U., Schell, J., Schmidt, J., Walden, R., Matvienko, M., Wellink, J., van Kammen, A., Franssen, H. and Bisseling, T. 1996. Modification of phytohormone response by a peptide encoded by ENOD40 of legumes and a nonlegume. Science 273: 370–373.

    PubMed  Google Scholar 

  • Vasse, J., De Billy, F., Camut, S. and Truchet, G. 1990. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J. Bact. 172: 4295–4306.

    PubMed  Google Scholar 

  • Verma, D.P.S. 1992. Signals in root nodule organogenesis and endocytosis of Rhizobium. Plant Cell 4: 373–382.

    Article  PubMed  Google Scholar 

  • Vijn, I., Yang, W.C., Pallisgard, N., Jensen, E.O., van Kammen, A. and Bisseling, T. 1995. VsENOD5, VsENOD12 and VsENOD40 expression during Rhizobium-induced nodule formation on Vicia sativa roots. Plant Mol. Biol. 28: 1111–1119.

    PubMed  Google Scholar 

  • Visintin, R. and Prinz S. 1997. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278: 460–463.

    PubMed  Google Scholar 

  • Weinberg, R.A. 1995. The retinoblastoma protein and cell cycle control. Cell 81: 323–330.

    Article  PubMed  Google Scholar 

  • Xie, Q., Sanz-Burgos, A.P., Hannon, G.J. and Gutierrez, C. 1996. Plant cells contain a novel member of the retinoblastoma family of growth regulatory proteins. EMBO J. 15: 4900–4908.

    PubMed  Google Scholar 

  • Yamagushi, S., Murakami, H. and Okayama, H. 1997. AWD-repeat protein controls the cell cycle and differentiation by negatively regulating Cdc2/B-type cyclin complex. Mol. Biol. Cell 8: 2475–2486.

    PubMed  Google Scholar 

  • Yang, W., Katinakis, P., Hendriks, P., Smolders, A., de Vries, F., Spee, J., van Kammen, A., Bisseling, T. and Franssen, H. 1993. Characterization of GmENOD40, a gene showing novel patterns of cell-specific expression during soybean nodule development Plant J. 3: 573–585.

    Google Scholar 

  • Yang, W.C., de Blank, C., Meskiene, I., Hirt, H., Bakker, J., van Kammen, A., Franssen, H. and Bisseling, T. 1994. Rhizobium Nod factors reactivate the cell cycle during infection and nodule primordium formation, but the cycle is only completed in primordium formation. Plant Cell 6: 1415–1426.

    Article  PubMed  Google Scholar 

  • Zachariae, W., Schwab, M., Nasmyth, K. and Seufert, W. 1998. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282: 1721–1724.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foucher, F., Kondorosi, E. Cell cycle regulation in the course of nodule organogenesis in Medicago. Plant Mol Biol 43, 773–786 (2000). https://doi.org/10.1023/A:1006405029600

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006405029600

Navigation